Ir Arriba Ir abajo


Bienvenidos en chino
Mobbing-acoso laboral-IRG

Métodos Generales de Diseño de Reactores Químicos F. Cunill, M. Iborra, J. Tejero, J.F. Izquierdo, C. Fité


¿Cómo se pasa de un reactor de laboratorio a un reactor industrial? Es decir, ¿cómo se realiza un cambio de escala?

Un cambio de escala puede realizarse en base a:

1. TEORÍA DE LA SEMEJANZA. El método consiste en construir unidades de tamaño progresivamente creciente (laboratorio, bancada (bench scale), planta piloto e industrial), manteniendo los grupos de parámetros geométricos y físico-químicos (Re=Reynolds, Pr=Prandtl, Nu=Nusselt, Da=Damköhler, etc.) para garantizar en principio un mismo régimen de funcionamiento.

Ejemplo: Gasificador de carbón en lecho fluidizado (Baytown, USA) (Exxon): 20 g/día (laboratorio), 100 kg/día (predesarrollo), 1 Tn/día (desarrollo), 80 Tn/día (planta piloto), 300 Tn/día (industrial), desarrollo ejecutado en 20 años, de 1970 a 1990.

Este método es impracticable con frecuencia ya que:

a) No se consigue reproducir en la escala pequeña todas las condiciones del reactor industrial.

b) La estructura de los balances de materia, energía y cantidad de movimiento que gobiernan el reactor es tal que frecuentemente no se pueden conservar simultáneamente la semejanza química, térmica, mecánica y geométrica.

No obstante, muchos reactores han sido diseñados por “saltos de pulga” siendo los parámetros de funcionamiento determinados por correlaciones empíricas tipo caja negra. El proceso es costoso, poco brillante, pero eficaz. Es el único procedimiento practicable cuando se trata de procesos complejos, multifásicos y con cinéticas complejas y/o reacciones poco conocidas.

2. MODELO MATEMÁTICO para el reactor (paso de gigante). Modelizar (matemáticamente) implica obtener la representación del sistema físico mediante un conjunto de ecuaciones. En el sistema de un reactor químico es importante la descripción matemática que permite predecir las concentraciones y temperaturas de la salida en función de las de la entrada, los caudales y las dimensiones del reactor.

El modelo matemático a usar puede ser empírico. Es decir, un modelo elegido por conveniencia atendiendo al esfuerzo requerido en su desarrollo. Sin embargo, el esfuerzo debe emplearse en llevar a cabo el análisis con dicho modelo debido a la restricción del rango de aplicabilidad. Un punto de vista opuesto para la obtención del modelo matemático es el de crear un modelo que describa los procesos físicos y químicos que se desarrollan en el reactor. Dicho modelo se denomina mecanístico y es más difícil de construir ya que implica el reconocimiento previo de las etapas físicas y químicas e implica mayor esfuerzo en el análisis al aumentar la complejidad matemática y el número de parámetros. Lógicamente siempre conviene un modelo preciso en la descripción de la realidad, pero es necesario plantear un compromiso entre la precisión de la descripción y el esfuerzo requerido en el planteamiento y el análisis. Estos modelos mecanísticos con ciertas simplificaciones se denominan semiempíricos. Es necesario señalar que cuando se discute el modelo de un sistema físico no hay que confundir la precisión de la descripción con el desajuste, es decir, la precisión con la que el modelo predice el resultado del reactor. De forma que un modelo puramente empírico puede tener un desajuste muy bajo aunque una descripción físico-química del sistema deficiente, mientras que un modelo mecanístico con una muy buena descripción físicoquímica del sistema puede tener un desajuste mayor.

Para cambiar de escala, la disposición de un modelo mecanístico permite hacer las extrapolaciones de forma más fundamentada. Si el modelo matemático es un conjunto de ecuaciones que representan la realidad física y química del sistema, las ecuaciones a considerar son:

♦ Balance de materia o ecuación de diseño (salida = f(entrada, cinética, modelo de flujo, modelo de contacto))
♦ Balance de energía
♦ Balance de energía mecánica
♦ Ecuaciones de estado cuando sea preciso
♦ Ecuaciones de equilibrio físico y/o químico

Así pues, estos modelos precisan de los conocimientos de la velocidad de reacción (cinética química), de las transferencias de interfase e intrafase de materia y energía (cinética física), así como de la fluidodinámica del conjunto del reactor (circulación y mezcla de los fluidos). Ello se refleja en el esquema, en el que la multitud de caminos indica la posibilidad de hacer simplificaciones.

Ver también: 1

No hay comentarios:

Publicar un comentario

Bienvenido a Avibert.
Deja habilitado el acceso a tu perfil o indica un enlace a tu blog o sitio, para que la comunicación sea mas fluida.
Saludos y gracias por comentar!