Ir Arriba Ir abajo


Bienvenidos en chino
Mobbing-acoso laboral-IRG
contador de visitas

Handbook of Industrial Crystallization - 2Ed. Allan S. Myerson

Myerson Cristallization

Table of Contents
1.Solutions and Solution Properties
2.Crystals. Crystal Growth, and Nucleation
3.The Influence of Impurities and Solvents on Crystallization
4.Analysis and Measurement of Crystallization Utilizing the Population Balance
5.Crystallizer Selection and Design
6.Precipitation Processes
7.Melt Crystallization
8.Crystallizer Mixing: Understanding and Modeling Cristallizer Mixing and Suspension Flow
9.Control of Crystallization Processes
10.Batch Crystallization
11.Crystallization in the Pharmaceutical and Bioprocessing Industries
12.Crystallization of Proteins
13.Crystallization in Foods

Descargar
Contraseña: Avibert

Wine Chemistry & Biochemistry
M. Victoria Moreno-Arribas · M. Carmen Polo, Editors

Wine

Table of Contents
Introduction

Part I Chemical and Biochemical Aspects ofWinemaking
1 Biochemistry of Alcoholic Fermentation
2 Biochemical Transformations Produced
3 Special Wines Production
3A Sparkling Wines and Yeast Autolysis
3B Biologically AgedWines
4 Enzymes in Winemaking
5 Use of Enological Additives for Colloid and Tartrate Salt Stabilization in White Wines and for Improvement of Sparkling Wine Foaming Properties
Part II Wine Chemical Compounds and Biochemical Processes
6 Nitrogen Compounds
6A Amino Acids and Biogenic Amines
6B Peptides
6C Proteins
7 Carbohydrates
8 Volatile and Aroma Compounds
8A Wine Aroma Precursors
8B Polyfunctional Thiol Compounds
8C Volatile Compounds and Wine Aging
8D Yeasts andWine Flavour
8E Identification of Impact Odorants of Wines
8F Interactions Between Wine Matrix Macro-Components and Aroma Compounds
9 Phenolic Compounds
9A Anthocyanins and Anthocyanin-Derived Compounds
9B Flavanols, Flavonols and Dihydroflavonols
9C Non-flavonoid Phenolic Compounds
9D Influence of Phenolics on Wine Organoleptic Properties
9E Health-Promoting Effects ofWine Phenolics
Part III Spoilage ofWines
10 Aromatic Spoilage of Wines by Raw Materials and Enological Products
11 Wine Spoilage by Fungal Metabolites
Part IV Automatic Analysers and Data Processing
12 Automatic Analysers in Oenology
13 Statistical Techniques for the Interpretation of Analytical Data
Index

Algebrator 4.0.1 Software

Algebrator

SOFTMATH develops Algebrator, the leading Algebra software program available to, students, teachers, working professionals and educational institutions today.
Algebrator is one of the most powerful algebra software programs ever developed. It will tackle the hardest algebra problems you throw at it. And it can show every step to every answer, effectively serving as an automated tutor for Algebra students at every level.
Students utilize Algebrator to supplement in-classroom learning, as well as assist them with rapidly completing their Algebra assignments.
Teachers use Algebrator to assist in the rapid creation of lessons and sample problems/solutions, as well as a supplemental, automated teaching assistant for students.
Professionals who need to solve Algebra problems use it in their place of work. Whether "math-challenged" or simply looking for productivtiy improvements by solving Algebraic equations quickly and completely, Algebrator is a great "Math Assistant" for the working professional!
Algebrator is a complete Algebra Tutoring solution, appropriate for solving Algebra problems all the way from Pre-Algebra through the Advanced College level.
Try online Demos

Emulsions, Foams and Suspensions Fundamentals and Applications
Laurier L. Schramm

Emulsions, Foams and Suspensions

Table of Contents
1 Introduction
1.1 The Colloidal State
1.2 Classification of Emulsions, Foams, and Suspensions
1.3 Characterization and Stability
2 Dispersion and Dispersed Species Characterization
2.1 Surface Area, Porosity, and Permeability
2.2 Size and Size Distribution
2.3 Conductivity
2.4 Sedimentation, Creaming, and Centrifugation
2.5 Characterization of Emulsions
2.6 Characterization of Foams
2.7 Characterization of Suspensions
3 Interfacial Energetics
3.1 Surface Area
3.2 Surface and Interfacial Tensions
3.3 Pressure and Curved Surfaces
3.4 Contact Angle and Wettability
3.5 Surfactants and Micelles
3.6 Applications of Surface Activity
3.7 Other Lyophilic Colloids: Microemulsions
4 Electrokinetics
4.1 Charged Interfaces
4.2 Electric Double Layer
4.3 Electrokinetic Phenomena
4.4 Electrostatic Properties in Non-aqueous Media
5 Colloid Stability
5.1 Electrostatic and Dispersion Forces
5.2 DLVO Theory and Practice
5.3 Hydration and Steric Effects
5.4 Additional Stabilizing Influences
5.5 Kinetics
5.6 Destabilization of Colloids
6 Colloid Rheology
6.1 Principles
6.2 Measurement
6.3 Non-Newtonian Flow Properties
6.4 Other Viscosity Nomenclature and Parameters
6.5 Dispersion Rheology
6.6 Surface Rheology
6.7 Flow in Pipelines and Constraining Media
7 Preparation, Inhibition, and Destruction of Dispersions
7.1 Preparation
7.2 Destruction and/or Inhibition
8 Introduction to Practical and Industrial Applications
8.1 General Uses
8.2 Emulsions
8.3 Foams
8.4 Suspensions
8.5 Hazards
9 Applications in the Environment
9.1 Introduction
9.2 Rocks, Sediments, and Soils
9.3 Environmental Soil Remediation
9.4 Water and Wastewater Treatment
9.5 Spills and Other Hazards
9.6 Environmental Foam Blankets
10 Mining and Mineral Processing Applications
10.1 Introduction
10.2 Hydraulic Mining and Hydrotransport
10.3 Mineral Flotation
10.3.1 Carrier, Emulsion, and Floc Flotation
10.4 Tailings and Tailings Ponds
10.5 Dust-Suppressing Foam Blankets
11 Petroleum Industry Applications
11.1 Oil Wells and Near Wells
11.2 Reservoirs
11.3 Surface Operations
12 Manufacturing and Materials Science Applications
12.1 Introduction
12.2 Papermaking
12.3 Emulsions for Road Paving
12.4 Metal-working
12.5 Cleaning Processes
12.6 Surface Coatings including Paints and Inks
12.7 Polymer Synthesis
12.8 Ceramics Manufacture
12.9 Fire-Fighting Foams
13 Food Product and Agricultural Applications
13.1 Introduction to Food Colloids
13.2 Stabilizing Agents
13.3 Preparation
13.4 Stability
13.5 Protein-stabilized Emulsions
13.6 Non-protein-stabilized Emulsions
13.7 Foam Food Products
13.8 Other Food Colloids
13.9 Introduction to Agricultural Colloids
14 Biological and Medical Applications
14.1 Introduction
14.2 Vesicle Carriers
14.3 Polymer Coatings
14.4 Emulsion Carriers
14.5 Colloids in Diagnostics
15 Personal Care Product Applications
15.1 Introduction
15.2 Detergents, Shampoos and Conditioners
15.3 Cosmetic Skin Care Products
15.4 Other Personal Care Products
16 Emerging Areas in Emulsions, Foams and Suspensions
16.1 Smart Colloids
16.2 Nanodispersions
16.3 Combatting Terror Agents
17 Glossary of Emulsion, Foam and Suspension Terminology
17.1 Introduction
17.2 Terms
18 References
Index

Manual de Soluciones Prácticas
para el Ingeniero Químico Carl R. Branan

Soluciones Prácticas para el Ingeniero Químico

Tabla de Contenidos
Sección Uno

Diseño del equipo
1. Flujo de fluídos
2. Intercambiadores de calor
3. Fraccionadoras
4. Absorbedoras
5. Bombaas
6. Compresoras
7. Elementos motores
8. Separadores-Acumuladores
9. Calderas
10 Torres de enfriamiento
Sección Dos
Diseño de Procesos
11. Refrigeración
12. Tratamiento de gases
13. Sistemas de vacío
14. Transportación neumática
15. Mezclado
Sección Tres
Diseño de la Planta
16. Evaluación de Procesos
17. Contabilidad
18. Metalurgia
19. Seguridad
20. Controles
Sección Cuatro
Operaciones
21. Detección de Fallas
22. Arranque
23. Conservación de la energía
24. Modelado de procesos aplicando la programación lineal
25. Propiedades
Apéndices

Handbook of Mathematics for Engineers and Scientists Andrei D. Polyanin - Alexander V. Manzhirov

Mathematics for Engineers

Contents
Part I. Definitions, Formulas, Methods, and Theorems

1. Arithmetic and Elementary Algebra
1.1. Real Numbers
1.2. Equalities and Inequalities. Arithmetic Operations. Absolute Value
1.3. Powers and Logarithms
1.4. Binomial Theoremand Related Formulas
1.5. Arithmetic and Geometric Progressions. Finite Sums and Products
1.6. Mean Values and Inequalities of General Form
1.7. Some Mathematical Methods
References for Chapter 1
2. Elementary Functions
2.1. Power, Exponential, and Logarithmic Functions
2.2. Trigonometric Functions
2.3. Inverse Trigonometric Functions
2.4. Hyperbolic Function
2.5. InverseHyperbolic Functions
References for Chapter 2
3. Elementary Geometry
3.1. Plane Geometry
3.2. Solid Geometry
3.3. Spherical Trigonometry
References for Chapter 3
4. Analytic Geometry
4.1. Points, Segments, and Coordinates on Line and Plane
4.2. Curves on Plane
4.3. Straight Lines and Points on Plane
4.4. Second-Order Curves
4.5. Coordinates, Vectors, Curves, and Surfaces in Space
4.6. Line and Plane in Space
4.7. Quadric Surfaces (Quadrics)
References for Chapter 4
5. Algebra
5.1. Polynomials and Algebraic Equations
5.2. Matrices and Determinants
5.3. Linear Spaces
5.4. Euclidean Spaces
5.5. Systems of Linear Algebraic Equations
5.6. LinearOperators
5.7. Bilinear and Quadratic Forms
5.8. Some Facts fromGroup Theory
References for Chapter 5
6. Limits and Derivatives
6.1. Basic Concepts ofMathematicalAnalysis
6.2. DifferentialCalculus for Functions of a SingleVariable
6.3. Functions of SeveralVariables. PartialDerivatives
References for Chapter 6
7. Integrals
7.1. Indefinite Integral
7.2. Definite Integral
7.3. Double and Triple Integrals
7.4. Line and Surface Integrals
References for Chapter 7
8. Series
8.1. Numerical Series and Infinite Products
8.2. Functional Series
8.3. Power Series
8.4. Fourier Series
8.5. Asymptotic Series
References for Chapter 8
9. Differential Geometry
9.1. Theory of Curves
9.2. Theory of Surfaces
References for Chapter 9
10. Functions of Complex Variable
10.1. Basic Notions
10.2. Main Applications
References for Chapter 10
11. Integral Transforms
11.1. General Formof Integral Transforms. Some Formulas
11.2. Laplace Transform
11.3. Mellin Transform
11.4. Various Forms of the Fourier Transform
11.5. Other Integral Transforms
References for Chapter 11
12. Ordinary Differential Equations
12.1. First-Order Differential Equations
12.2. Second-Order Linear Differential Equations
12.3. Second-Order Nonlinear Differential Equations
12.4. Linear Equations of ArbitraryOrder
12.5. Nonlinear Equations of ArbitraryOrder
12.6. Linear Systems of OrdinaryDifferential Equations
12.7. Nonlinear Systems of OrdinaryDifferential Equations
References for Chapter 12
13. First-Order Partial Differential Equations
13.1. Linear and Quasilinear Equations
13.2. Nonlinear Equations
References for Chapter 13
14. Linear Partial Differential Equations
14.1. Classification of Second-Order Partial Differential Equations
14.2. Basic Problems ofMathematical Physics
14.3. Properties and Exact Solutions of Linear Equations
14.4. Method of Separation of Variables (FourierMethod)
14.5. Integral TransformsMethod
14.6. Representation of the Solution of the Cauchy Problem via the Fundamental Solution
14.7. Boundary Value Problems for Parabolic Equations with One Space Variable. Green’s Function
14.8. Boundary Value Problems for Hyperbolic Equations with One Space Variable. Green’s Function. Goursat Problem
14.9. Boundary Value Problems for Elliptic Equations with Two Space Variables
14.10. Boundary Value Problems with Many Space Variables. Representation of Solutions via theGreen’s Function
14.11. Construction of the Green’s Functions. General Formulas and Relations
14.12. Duhamel’s Principles in Nonstationary Problems
14.13. Transformations Simplifying Initial and Boundary Conditions
References for Chapter 14
15. Nonlinear Partial Differential Equations
15.1. Classification of Second-Order Nonlinear Equations
15.2. Transformations of Equations of Mathematical Physics
15.3. Traveling-Wave Solutions, Self-Similar Solutions, and Some Other Simple Solutions. SimilarityMethod
15.4. Exact Solutionswith Simple Separation of Variables
15.5. Method of Generalized Separation of Variables
15.6. Method of Functional Separation of Variables
15.7. Direct Method of Symmetry Reductions of Nonlinear Equations
15.8. Classical Method of Studying Symmetries of Differential Equations
15.9. NonclassicalMethod of Symmetry Reductions
15.10. Differential ConstraintsMethod
15.11. Painlev´e Test for Nonlinear Equations of Mathematical Physics
15.12. Methods of the Inverse Scattering Problem (Soliton Theory)
15.13. Conservation Laws and Integrals ofMotion
15.14. Nonlinear Systems of PartialDifferential Equations
References for Chapter 15
16. Integral Equations
16.1. Linear Integral Equations of the First Kind with Variable Integration Limit
16.2. Linear Integral Equations of the Second Kind with Variable Integration Limit
16.3. Linear Integral Equations of the First Kind with Constant Limits of Integration
16.4. Linear Integral Equations of the Second Kind with Constant Limits of Integration
16.5. Nonlinear Integral Equations
References for Chapter 16
17. Difference Equations and Other Functional Equations
17.1. Difference Equations of Integer Argument
17.2. Linear Difference Equations with a Single Continuous Variable
17.3. Linear Functional Equations
17.4. Nonlinear Difference and Functional Equations with a Single Variable
17.5. Functional Equationswith SeveralVariables
References for Chapter 17
18. Special Functions and Their Properties
18.1. Some Coefficients, Symbols, and Numbers
18.2. Error Functions. Exponential and Logarithmic Integrals
18.3. Sine Integral and Cosine Integral. Fresnel Integrals
18.4. Gamma Function, Psi Function, and Beta Function
18.5. IncompleteGamma and Beta Functions
18.6. Bessel Functions (Cylindrical Functions)
18.7. Modified Bessel Functions
18.8. Airy Functions
18.9. Degenerate Hypergeometric Functions (Kummer Functions)
18.10. Hypergeometric Functions
18.11. Legendre Polynomials, Legendre Functions, and Associated Legendre Functions
18.12. ParabolicCylinder Functions
18.13. Elliptic Integrals
18.14. Elliptic Functions
18.15. Jacobi Theta Functions
18.16. Mathieu Functions and ModifiedMathieu Functions
18.17. Orthogonal Polynomials
18.18. Nonorthogonal Polynomials
References for Chapter 18
19. Calculus of Variations and Optimization
19.1. Calculus of Variations and Optimal Control
19.2. Mathematical Programming
References for Chapter 19
20. Probability Theory
20.1. Simplest Probabilistic Models
20.2. Random Variables and Their Characteristics
20.3. Limit Theorems
20.4. Stochastic Processes
References for Chapter 20
21. Mathematical Statistics
21.1. Introduction to Mathematical Statistics
21.2. Statistical Estimation
21.3. Statistical Hypothesis Testing
References for Chapter 21
Part II. Mathematical Tables 1111
T1. Finite Sums and Infinite Series
T1.1. Finite Sums
T1.2. Infinite Series
References for Chapter T1
T2. Integrals
T2.1. Indefinite Integrals
T2.2. Tables of Definite Integrals
References for Chapter T2
T3. Integral Transforms
T3.1. Tables of Laplace Transforms
T3.2. Tables of Inverse Laplace Transforms
T3.3. Tables of Fourier Cosine Transforms
T3.4. Tables of Fourier Sine Transforms
T3.5. Tables of Mellin Transforms
T3.6. Tables of Inverse Mellin Transforms
References for Chapter T3
T4. Orthogonal Curvilinear Systems of Coordinate
T4.1. Arbitrary Curvilinear Coordinate Systems
T4.2. Special Curvilinear Coordinate Systems
References for Chapter T4
T5. Ordinary Differential Equations
T5.1. First-Order Equations
T5.2. Second-Order Linear Equations
References for Chapter T5
T6. Systems of Ordinary Differential Equations
T6.1. Linear Systems of Two Equations
T6.2. Linear Systems of Three and More Equations
T6.3. Nonlinear Systems of Two Equations
T6.4. Nonlinear Systems of Three or More Equations
References for Chapter T6
T7. First-Order Partial Differential Equations
T7.1. Linear Equations
T7.2. Quasilinear Equations
T7.3. Nonlinear Equations
T8. Linear Equations and Problems of Mathematical Physics
T8.1. Parabolic Equations
T8.2. Hyperbolic Equations
T8.3. Elliptic Equations
T8.4. Fourth-Order Linear Equations
References for Chapter T8
T9. Nonlinear Mathematical Physics Equations
T9.1. Parabolic Equations
T9.2. Hyperbolic Equations
T9.3. Elliptic Equations
T9.4. Other Second-Order Equations
T9.5. Higher-Order Equations
References for Chapter T9
T10. Systems of Partial Differential Equations
References for Chapter T10
T11. Integral Equations
References for Chapter T11
T12. Functional Equations
References for Chapter T12
Supplement. Some Useful ElectronicMathematical Resources
Index

The Alcohol Textbook A reference for the beverage, fuel and industrial alcohol
by K. Jacques, PhD, T. Lyons, PhD, D.R. Kelsall

The alcohol textbook

Table of Contents
Ethanol industry today
1 Ethanol around the world: rapid growth in policies, technology and production
Raw material handling and processing
2 Grain dry milling and cooking procedures: extracting sugars in preparation for fermentation
3 Enzymatic conversion of starch to fermentable sugars
4 Grain handling: a critical aspect of distillery operation
Substrates for ethanol production
5 Lignocellulosics to ethanol: meeting ethanol demand in the future
6 Ethanol production from cassava
Whey alcohol - a viable outlet for whey?
8 Treatment and fermentation of molasses when making rum-type spirits
Yeast and management of fermentation
9 Understanding yeast fundamentals
10 Practical management of yeast: conversion of sugars to ethanol
11 Continuous fermentation in the fuel alcohol industry: How does the technology affect yeast?
12 Understanding near infrared spectroscopy and its applications in the distillery
13 Emerging biorefineries and biotechnological applications of nonconventional yeast: now and in the future
Beverage alcohol production
14 Production of Scotch and Irish whiskies: their history and evolution
15 Tequila production from agave: historical influences and contemporary processes
16 Production of heavy and light rums: fermentation and maturation
17 From pot stills to continuous stills: flavor modification by distillation
18 From liqueurs to ‘malternatives’: the art of flavoring and compounding alcohol
19 Production of American whiskies: bourbon, corn, rye and Tennessee Ron Ralph
Contamination and hygiene
20 Bacterial contamination and control in ethanol production
21 Managing the four Ts of cleaning and sanitizing: time, temperature, titration and turbulence
Recovery
22 Ethanol distillation: the fundamentals
23 Development and operation of the molecular sieve: an industry standard
Engineering ethanol fermentations
24 Water reuse in fuel alcohol plants: effect on fermentation. Is a ‘zero discharge’ concept attainable?
25 Understanding energy use and energy users in contemporary ethanol plants
The dryhouse, co-products and the future
26 Dryhouse design: focusing on reliability and return on investment
27 Ethanol production and the modern livestock feed industry: a relationship continuing to grow
28 Biorefineries: the versatile fermentation plants of the future
The Alcohol AlphabetA glossary of terms used in the ethanol-producing industries

Staphylococcus Aureus Capacidad enterotoxigénica y resistencia antibiótica de cepas aisladas de alimentos y manos de manipuladores


Resumen
Se estudió la producción de enterotoxinas y sensibilidad antibiótica de cepas de Staphylococcus aureus aisladas de alimentos listos para consumir y de manos de manipuladores de servicios de comidas, entre el 1/5/2002 y el 15/11/2003. Se investigó su presencia en recuentos 102 UFC/g en 439 alimentos y su presencia / ausencia en 336 hisopados de manos (agar Baird Parker, Gram, catalasa, coagulasa, DNAsa y API STAPH), resultando positivas el 13,4% y el 9,8% de las muestras, respectivamente. En 33 cepas (aisladas de 19 alimentos y 14 hisopados), se estudió la capacidad de producir enterotoxinas (Vidas System) y la sensibilidad antibiótica (NCCLS) frente a meticilina, eritromicina, clindamicina, rifampicina, lincomicina, nitrofurano, gentamicina, cotrimoxazol, vancomicina, teicoplanina, cloranfenicol, fosfomicina, tetraclicina, ciprofloxacina y oxacilina. Presentaron resistencia a eritromicina dos cepas (6,1%), aisladas de un hisopado y un alimento, siendo esta última también resistente a clindamicina.

Mientras que el 90,9% de las cepas fue resistente a penicilina, una cepa (3,0%), aislada de un manipulador, fue resistente a gentamicina. Se demostró la presencia de enterotoxina en el 64,3% de las cepas aisladas de hisopados y 57,9% de las de alimentos. La alta proporción de cepas enterotoxigénicas aisladas resalta la importancia de la capacitación de los manipuladores en Buenas Prácticas de Elaboración como estrategia para prevenir brotes de enfermedades transmitidas por alimentos por S. aureus.

Introducción
Staphylococcus aureus es un microorganismo ubicuo, cuyo hábitat principal es la piel, sus glándulas anexas y las mucosas de los animales de sangre caliente.

En los portadores humanos, se multiplica primariamente en la nariz, sitio que puede ser colonizado durante los primeros días de vida. Muchos portadores nasales también lo portan en la piel, ya que el hábito de tocarse la nariz hace que S. aureus pase a las manos. Si bien es considerado un comensal, parte de la microflora normal permanente o transitoria, en ocasiones se convierte en un patógeno oportunista, causando desde infecciones menores en piel, hasta cuadros sistémicos, que pueden llevar a la muerte. S. aureus es, por lo tanto, un microorganismo de gran importancia en clínica, en especial por las cepas meticilino resistentes (SAMR), conocidas desde hace más de 30 años (2, 7, 14).

Además de su importancia en clínica, Staphylococcus aureus es considerado mundialmente uno de los agentes más importantes de enfermedades transmitidas por alimentos (ETA) (1, 4, 9, 10). Sin embargo, al tratarse generalmente de cuadros gastrointestinales leves, autolimitantes, los casos o brotes por este microorganismo, pocas veces son notificados (6).

S. aureus causa un cuadro de intoxicación que resulta de la ingestión de una o más enterotoxinas (ETs) preformadas en el alimento. Son proteínas de bajo peso molecular que resisten la acción de enzimas digestivas como tripsina y pepsina y son estables a las temperaturas de cocción. Por métodos serológicos pueden diferenciarse 14, aunque sólo algunas están bien caracterizadas bioquímicamente (13, 14). Hasta el momento las Ets A, B, C, D y E o sus combinaciones son las que se han detectado en alimentos elaborados en servicios de comidas (15).

Se han hecho muchos esfuerzos por intentar relacionar la producción de ET con diferentes propiedades bioquímicas de los estafilococos, principalmente las pruebas de coagulasa y termonucleasa. Sin embargo, no todas las cepas coagulasa y/ o termonucleasa positivas, son enterotoxigénicas (15).

Las intoxicaciones por S. aureus no requieren del uso de antibióticos, motivo por el cual generalmente no se realizan pruebas de sensibilidad antibiótica de las cepas aisladas de alimentos. Sin embargo, en 1995 se produjo un brote por SAMR en un hospital, en el que 21 pacientes de hematología se vieron afectados y cinco murieron. La investigación señaló a los alimentos como vehículo de esta cepa, confirmándose la presencia de un manipulador colonizado por la misma (8). Recientemente, se describió en Estados Unidos el primer brote de una intoxicación alimentaria en la comunidad cuyo agente etiológico fue una cepa SAMR, productora de enterotoxina C (7).

En el presente trabajo se realizó un estudio prospectivo con el fin de investigar la producción de enterotoxinas y la sensibilidad antibiótica de cepas de S. aureus coagulasa positivas, aisladas de alimentos listos para consumir y de las manos de manipuladores.

Para ver Materiales y Métodos, Resultados, Discusión y Conclusiones descargar el paper.

Biochemistry Garret & Grisham

Biochemistry

TABLE OF CONTENTSCHAPTER 1
Chemistry Is the Logic of Biological Phenomena
CHAPTER 2
Water, pH, and Ionic Equilibria
CHAPTER 3
Thermodynamics of Biological Systems
CHAPTER 4
Amino Acids
CHAPTER 5
Proteins: Their Biological Functions and Primary Structure
APPENDIX TO CHAPTER 5
Protein Techniques
CHAPTER 6
Proteins: Secondary, Tertiary, and Quaternary Structure
CHAPTER 7
Carbohydrates
CHAPTER 8
Lipids
CHAPTER 9
Membranes and Cell Surfaces
CHAPTER 10
Membrane Transport
CHAPTER 11
Nucleotides
CHAPTER 12
Nucleic Acids
CHAPTER 13
Recombinant DNA

Biotecnología
de la cerveza y de la malta J. S. Hough



Tabla de Contenidos
1. Introducción

2. La cebada, materia prima esencial
3. La malta, un paquete de enzimas y sustancias nutritivas
4. El agua, sus papeles en la elaboración de cerveza
5. Producción del mosto dulce
6. El lúpulo y la ebullición del mosto
7. Levaduras y bacterias
8. Fermentación, fundamentos del proceso
9. Tratamientos post fermentativos

Three-dimensional microfluidic devices
fabricated in layered paper and tape

Microlaboratorio de papel

This paper describes a method for fabricating 3D microfluidic devices by stacking layers of patterned paper and double-sided adhesive tape. Paper-based 3D microfluidic devices have capabilities in microfluidics that are difficult to achieve using conventional open-channel microsystems made from glass or polymers.

In particular, 3D paper-based devices wick fluids and distribute microliter volumes of samples from single inlet points into arrays of detection zones (with numbers up to thousands). This capability makes it possible to carry out a range of new analytical protocols simply and inexpensively (all on a piece of paper) without external pumps.

We demonstrate a prototype 3D device that tests 4 different samples for up to 4 different analytes and displays the results of the assays in a side-by-side configuration for easy comparison. Three-dimensional paper-based microfluidic devices are especially appropriate for use in distributed healthcare in the developing world and in environmental monitoring and water analysis.

Food Safety Hazard Guidebook Food Technology

Food Safety

Contents
Introduction
Section 1: Biological Hazards

Chapter 1.1 Bacteria
1.1.1 Aeromonas Species
1.1.2 Arcobacter
1.1.3 Bacillus Species
1.1.4 Campylobacter
1.1.5 Clostridium botulinum
1.1.6 Clostridium perfringens
1.1.7 Enterobacter sakazakii
1.1.8 Enterococci
1.1.9 Listeria
1.1.10 Mycobacterium avium Subsp paratuberculosis
1.1.11 Plesiomonas shigelloides
1.1.12 Pseudomonas aeruginosa
1.1.13 Salmonella
1.1.14 Shigella
1.1.15 Staphylococcus aureus
1.1.16 Streptococci
1.1.17 Verocytotoxin-Producing Escherichia coli (VTEC)
1.1.18 Vibrio cholerae
1.1.19 Vibrio parahaemolyticus
1.1.20 Vibrio vulnificus
1.1.21 Yersinia enterocolitica
1.1.22 Yersinia pseudotuberculosis
1.1.23 Other Enterobacteriaceae
Chapter 1.2 Viruses
1.2.1 Astroviruses
1.2.2 Hepatitis A Virus
1.2.3 Hepatitis E Virus
1.2.4 Highly Pathogenic Avian Influenza Viruses
1.2.5 Noroviruses
1.2.6 Parvoviruses
1.2.7 Rotaviruses
1.2.8 Sapoviruses
Chapter 1.3 Parasites
1.3.1 Protozoa
1.3.1.1 Cryptosporidium
1.3.1.2 Cyclospora
1.3.1.3 Entamoeba
1.3.1.4 Giardia
1.3.1.5 Toxoplasma
1.3.2 Nematodes
1.3.2.1 Anisakids
1.3.2.2 Trichinella
1.3.3 Other Parasites
Chapter 1.4 Prions
Section 2: Chemical Hazards
Chapter 2.1 Biological Toxins
2.1.1 Fungal Toxins
2.1.1.1 Aflatoxins
2.1.1.2 Citrinin
2.1.1.3 Cyclopiazonic Acid
2.1.1.4 Deoxynivalenol
2.1.1.5 Ergot
2.1.1.6 Fumonisins
2.1.1.7 Moniliformin
2.1.1.8 Ochratoxins
2.1.1.9 Patulin
2.1.1.10 Sterigmatocystin
2.1.1.11 Trichothecenes
2.1.1.12 Zearalenone
2.1.1.13 Other Mycotoxins
2.1.2 Plant Toxins
2.1.2.1 Cucurbitacins
2.1.2.2 Cyanogenic Glycosides
2.1.2.3 Furocoumarins
2.1.2.4 Glycoalkaloids
2.1.2.5 Grayanotoxin
2.1.2.6 Lectins
2.1.3 Fish Toxins
2.1.3.1 Amnesic Shellfish Poisoning (ASP)
2.1.3.2 Azaspiracid Shellfish Poisoning (AZP)
2.1.3.3 Ciguatera Fish Poisoning
2.1.3.4 Diarrhoeic Shellfish Poisoning (DSP)
2.1.3.5 Neurologic Shellfish Poisoning (NSP)
2.1.3.6 Paralytic Shellfish Poisoning (PSP)
2.1.3.7 Tetrodotoxin
2.1.4 Biogenic Amines
2.1.4.1 Biogenic Amines (Excluding Histamine)
2.1.4.2 Scombrotoxin (Histamine)
Chapter 2.2 Non-Biological Contaminants
2.2.1 Contaminants Produced During Processing
2.2.1.1 Acrylamide
2.2.1.2 Benzene
2.2.1.3 Chloropropanols
2.2.1.4 Furan
2.2.1.5 Polycyclic Aromatic Hydrocarbons
2.2.2 Contaminants from Food-Contact Materials
2.2.2.1 Bisphenol A
2.2.2.2 Phthalates
2.2.2.3 Semicarbazide
2.2.3 Environmental Contaminants
2.2.3.1 Dioxins and PCBs
2.2.3.2 Heavy Metals
2.2.3.3 Perchlorate
2.2.4 Veterinary Residues
2.2.4.1 Antibiotics
2.2.4.2 Hormones
Section 3: Allergens
Chapter 3.1 Food Allergy
Chapter 3.2 Specific Allergens
3.2.1 Celery Allergy
3.2.2 Hen’s Egg Allergy
3.2.3 Fish Allergy
3.2.4 Cow’s Milk Allergy
3.2.5 Mustard Allergy
3.2.6 Peanut Allergy
3.2.7 Shellfish Allergy
3.2.8 Soya Allergy
3.2.9 Sesame Allergy
3.2.10 Sulfite Allergy
3.2.11 Tree-Nut Allergy
3.2.12 Wheat Allergy
Chapter 3.3 Allergen-Control Options
Chapter 3.4 Allergen Legislation
Section 4: Food Safety Legislation
Section 5: Sources of Further Information

Carne y Pescado Tecnología de los Alimentos


A mis lectores Manfenix

El blog está en una etapa de cambio, como lo están viendo. Iré agregando algunos detalles que ayudarán a perfilar el blog en cuanto al acceso y adquisición de información específica y general de los distintos ámbitos de la Tecnología de los Alimentos, Ingeniería Química y otros afines. Pueden darme sugerencias al respecto a través del Cbox. Saludos.

Manfenix

Re - Engineering The Chemical Processing Plant Andrzej Stankiewicz, Jacob A. Moulijn

Re-engineering

Tables of Contents
1. Process Intensification
History, Philosophy, Principles
Andrzej Stankiewicz and A. A. H. Drinkenburg
2. Chemical Processing in High-Gravity Fields
David L. Trent
3. The Spinning Disc Reactor

C. Ramshaw
4. Compact Multifunctional Heat Exchangers
A Pathway to Process Intensification
B. Thonon and P. Tochon
5. Process Intensification Through Microreaction Technology
Wolfgang Ehrfeld
6. Structured Catalysts and Reactors
A Contribution to Process Intensification
Jacob A. Moulijn, Freek Kapteijn, and Andrzej Stankiewicz
7. Inline and High-Intensity Mixers
Andrew Green
8. Reactive and Hybrid Separations
Incentives, Applications, Barriers
Andrzej Stankiewicz
9. Reactive Separations in Fluid Systems
E. Y. Kenig, A. Górak, and H.-J. Bart
10. Multifunctional Reactors
Integration of Reaction and Heat Transfer
David W. Agar
11. Process Synthesis/Integration
Patrick Linke, Antonis Kokossis, and Henk van den Berg
12. Process Intensification in Industrial Practice
Methodology and Application
Remko A. Bakker
13. Process Intensification for Safety
Dennis C. Hendershot
14. Process Intensification Contributions to Sustainable Development
G. Jan Harmsen, Gijsbert Korevaar, and Saul M. Lemkowitz

Microbiología Industrial Bases

Microbiología Industrial

TABLA DE CONTENIDOS
GENERALIDADES DE LA MICROBIOLOGÍA
Membrana citoplasmática bacteriana
Pared bacteriana
Endospora bacteriana
Metabolismo microbiano
Crecimiento microbiano
INTRODUCCIÓN A LA MICROBIOLOGÍA INDUSTRIAL
MICROORGANISMOS DE INTERÉS INDUSTRIAL

MANTENIMIENTO Y CONSERVACIÓN DE MICROORGANISMOS
INDUSTRIALES
BÚSQUEDA DE NUEVOS METABOLITOS
MEJORA DE CEPAS DE INTERÉS INDUSTRIAL
SUSTRATOS PARA MICROBIOLOGÍA INDUSTRIAL

Sustratos usados como fuentes de carbono
Sustratos usados como fuentes de nitrógeno
MÉTODOS DE FERMENTACIÓN A GRAN ESCALA
Modos de operación del biorreactor
Biorreactores
Tipos de biorreactores
Instrumentación y control del proceso
Escalado
Técnicas de esterilización
* Del medio de cultivo
* Del aire de fermentación
Proceso fermentativo
RECUPERACIÓN DE PRODUCTOS FINALES
Separación de las células
* Filtración
* Centrifugación
Rotura celular
Aislamiento preliminar
Purificación
Secado
Recuperación de productos de ADN recombinante
Rendimiento
PRODUCCIÓN DE ALCOHOLES
Procesos de producción de etanol
* Preparación del sustrato
* Fermentación
* Purificación
Producción de acetona/butanol
PRODUCCIÓN DE ÁCIDOS ORGÁNICOS
Ácido cítrico
* Medio nutricional
* Procesos de producción
__Procesos en superficie (o koji, del japonés)
__Procesos sumergidos o en profundidad
* Purificación
Ácido acético
Producción
* Método Orleans
* Método alemán
* Generadores por goteo o reactor Frigs
* Procesos sumergidos
Ácido láctico
Ácido málico
Ácido fumárico
PRODUCCIÓN DE NUCLEÓTIDOS, AMINOÁCIDOS Y VITAMINAS
Nucleótidos
* Hidrólisis enzimática del ARN
* Hidrólisis química del ARN
* Fermentación del IMP
* Fermentación del GMP
__Síntesis indirecta
__Síntesis directa
Aminoácidos
* Glutamato
* Otros aminoácidos
Vitaminas
* Riboflavina (B2)
* Cobalamina (B12)
* Ácido ascórbico (C)
PRODUCCIÓN DE ENZIMAS
Producción comercial
* Selección de cepas
* Procesos de producción
__Sobre sustrato sólido (procesos Koji)
__Procesos en biorreactores
Aplicaciones
* Detergentes
* Producción de quesos
* Procesado del almidón
* Industria papelera
* Elaboración de zumos
* Elaboración de vinos
* Industria textil
* Síntesis orgánica
PRODUCCIÓN MICROBIOLÓGICA DE ANTIBIÓTICOS
Antibióticos β-lactámicos
* Penicilinas
* Cefalosporinas
* Nuevos productos
Antibióticos peptídicos
Antibióticos carbohidratados
Antibióticos macrolídicos
Tetraciclinas
Antibióticos aromáticos
* Cloranfenicol
* Griseofulvina
PRODUCCIÓN MICROBIOLÓGICA DE VACUNAS
Métodos de producción
* Sistemas tradicionales
* Vacunas de subunidades (técnicas de ADN recombinante)
* Vacunas peptídicas
PRODUCCIÓN MICROBIOLÓGICA DE PROTEÍNAS TERAPÉUTICAS
DNAsa
Eritropoietina (EPO)
Somatropina
Insulina
Interferón
Interleuquinas
Activador del tejido plasminógeno
Colágeno
PRODUCCIÓN MICROBIOLÓGICA DE SCP
Producción de proteína unicelular
* Sustratos
* Procesos de producción
Producción de levadura para panadería

Reverse Osmosis Special Case of Diffusion

Background

Diffusion is the movement of molecules from a region of high concentration to a region of lower concentration. Osmosis is a special case of diffusion in which the molecules are of water and the concentration gradient occurs across a semipermeable membrane.
Diffusion and osmosis are thermodynamically favorable and will continue till equilibrium is reached. Osmosis can be slowed, stopped or even reversed if sufficient pressure is applied to the membrane from the ‘concentrated’ side of the membrane.

Introduction

Reverse Osmosis is the movement of water molecules across the semipermeable membrane against the concentration gradient, from a region of low concentration to a region of higher concentration, by applying a pressure in excess of the osmotic pressure.

The membranes used for reverse osmosis have a dense barrier layer in the polymer matrix where most separation occurs. The semipermeable membrane allows the passage of water but not ions (Na+, Ca+2, Cl-1) or larger molecules (e.g. Glucose, urea, bacteria)

Uses

One of the methods used for desalinating water- Purification of ethanol ( here water is present as an undesirable impurity)- Commercial and residential water filtration

Industrial Applications

Reverse Osmosis systems can be used to treat boiler feed water, industrial wastewater, process water and more.

A few of the major uses are:
BOILER FEED WATER TREATMENT
RO is used to reduce the solids content of water prior to feeding into boilers for the power generation and other industries.
PHARMACEUTICALS
RO is an approved treatment process for the production of United States Pharmacopeia(USP) grade water for pharmaceutical applications.
FOOD & BEVERAGE
Water used to process food products and to produce beverages is often treated by a RO system.
SEMICONDUCTORS
RO is an accepted component of a treatment process to produce ultrapure water in the semiconductor industry.
METAL FINISHING
RO systems have been successfully applied to a variety of metal finishing operations including several type of copper, nickel and zinc electroplating; nickel acetate seal and black dye.

Cost Benefits of RO

RO is increasingly being adopted by power producers as a treatment method for purifying boiler feed water, makeup water and in zero-liquid discharge applications. The injection of high-purity water produced by RO technology into a gas turbine can improve operating efficiency and increase energy output by 10 percent or more.
There are other cost benefits as well. For example, the prices of acid and caustic solutions continue to rise while the prices of RO units and membrane elements continue to decrease. The primary cost for operating RO systems is electricity, and since these systems consume very little energy, operating costs are relatively low.
Operating efficiency differs between ion exchange beds and RO systems. Cation and anion resin beds must be regenerated once they reach a set exchange capacity. Their efficiency is related directly to the amount of dissolved solids that pass through the system. Conversely, the operating cost for RO does not vary with the level of dissolved solids in the feed water since the operating cost is based on flow rate.
An RO system does not require significant downtime with the exception of quarterly or semi-annual routine maintenance. And RO systems are highly automated, requiring minimal operator interaction. By contrast, during regeneration, which can take up to twelve hours, ion exchange equipment cannot be used and the plant is forced to stop water production.
With such advantages, expect to see continued growth in the use of RO technology in the industrial sector, particularly for power generation applications.

By Associate Writer - Ms. Nidhi Garg
Fuente: Chemical Professionals

Sensory-Directed Flavor Analysis Ray Marsili

Flavor Analysis

Table of Contents
Chapter 1
Comparing sensory and analytical chemistry flavor analysis
Ray T. Marsili
Chapter 2
Relating sensory and instrumental analyses
M.A. Drake, R.E. Miracle, A.D. Caudle, and K.R. Cadwallader
Chapter 3
Application of sensory-directed flavor-analysis techniques Ray T. Marsili
Chapter 4
An integrated MDGC-MS-olfactometry approach to aroma and flavor analysis
David K. Eaton, Lawrence T. Nielsen, and Donald W. Wright
Chapter 5
Preseparation techniques in aroma analysis
Michael C. Qian, Helen M. Burbank, and Yuanyuan Wang
Chapter 6
Solid phase dynamic extraction: a technique for extracting more analytes from samples
Ingo Christ, Ulrike B. Kuehn, and Ken Strassburger
Chapter 7
The application of chemometrics for studying flavor and off-flavor problems in foods and beverages
Ray T. Marsili
Chapter 8
Sensometrics: the application of multivariate analysis to sensory data
S. Karow, Y. Fu, and T. Laban
Chapter 9
Character-impact flavor compounds
Robert J. McGorrin

¿Todo Desnatado? Nutrición

Todos los días nos bombardean con anuncios de productos Light, desnatados, 0% grasa…, y es cierto que un exceso en el consumo de grasa no es beneficioso para nuestro organismo, pero no tomar nada tampoco es lo mejor. Concretamente hoy quiero hablar de la grasa de la leche, ese componente de la misma que siempre se intenta eliminar o disminuir, y así tenemos las leches desnatadas, semidesnatadas…

En una dieta sana se recomienda que del 30% al 35% de las calorías que se ingieran sean en forma de grasas, y de ellas el 10% deberían ser grasa saturadas. La grasa de la leche siempre ha tenido una fama injustificada de elevar los niveles de colesterol y de engordar, y en verdad es una fracción muy recomendable y saludable de la leche. Tiene ácidos grasos saturados como el mirístico, palmítico y esteárico, ácidos insaturados como el oleico, el linoleico, el linolenico…

El ácido linoleico, es el ácido predominate de la serie Omega 6, y el linolénico de la serie omega 3. De todos es conocido el beneficio del consumo de estos ácidos, como el descenso en la incidencia de enfermedades cardiovasculares, efectos beneficiosos sobre el cerebro, disminución en la posibilidad de sufrir depresión...etc, etc
Pero el ácido graso que más importancia representa para nuestra salud, es el ácido linoleico conjugado, el CLA, que está presente en la leche de los rumiantes, formándose a partir del ácido linoleico por la acción de la flora gastrointestinal.

El CLA, que en los últimos años está generando bastante interés científico, presenta algunas propiedades tales como el efecto en el peso corporal. Un estudio en humanos, en donde se administraron suplementos de CLA, concluyó que las personas que habían consumido CLA adelgazó entre un 15-20% respecto a las personas que habían tomado placebo.

También tiene efectos anticancerígenos; se han llevado a cabo estudios en ratones en donde se han demostrado las propiedades inhibitorias en tumores de piel, estómago, colon y senos, aparte de la gran capacidad del CLA para captar radicales libres. Incrementando las células blancas de la sangre, el CLA posee efectos sobre el sistema inmunitario. Sus efectos antidiabetogénicos se basan en que incrementa la sensibilidad de la insulina.

Además de todas las propiedades otorgadas al CLA, la grasa de la leche es un vehículo de vitaminas liposolubles como la vitamina D, A y E.

La vitamina A aumenta la inmunidad, es esencial para el crecimiento, evita la ceguera, y aumenta la fertilidad masculina y femenina…

La vitamina D tiene funciones antienvejecimiento, es un regulador biológico del metabolismo del calcio y del fósforo…

La vitamina E es un antioxidante, un anticoagulante, ayuda a prevenir la arteriosclerosis… La grasa de la leche además, tiene una influencia favorable sobre el gusto y el sabor de la misma.

Aparte de todos los beneficios y propiedades de la grasa láctea, hay que tener en cuenta que para determinados grupos poblacionales la grasa de la leche no es tan apropiada, como por ejemplo, para aquellas personas que sufren enterocolitis, enfermedad de Crohn…

Por lo tanto, podemos concluir que la leche entera es un alimento benéfico para nuestro organismo, siempre en el marco de una dieta sana y equilibrada.

Ana Mª Veses
Lcda en Biología y Bioquímica
Insto del Frio (CSIC)
Madrid

Physical Chemistry Paul Monk

Monk

Contents
1 Introduction to physical chemistry
1.1 What is physical chemistry: variables, relationships and laws
1.2 The practice of thermodynamic measurement
1.3 Properties of gases and the gas laws
1.4 Further thoughts on energy
2 Introducing interactions and bonds
2.1 Physical and molecular interactions
2.2 Quantifying the interactions and their influence
2.3 Creating formal chemical bonds
3 Energy and the first law of thermodynamics
3.1 Introduction to thermodynamics: internal energy
3.2 Enthalpy
3.3 Indirect measurement of enthalpy
4 Reaction spontaneity and the direction of thermodynamic change
4.1 The direction of physicochemical change: entropy
4.2 The temperature dependence of entropy
4.3 Introducing the Gibbs function
4.4 The effect of pressure on thermodynamic variables
4.5 Thermodynamics and the extent of reaction
4.6 The effect of temperature on thermodynamic variables
5 Phase equilibria
5.1 Energetic introduction to phase equilibria
5.2 Pressure and temperature changes with a single-component system: qualitative discussion
5.3 Quantitative effects of pressure and temperature change for a
single-component system
5.4 Phase equilibria involving two-component systems: partition
5.5 Phase equilibria and colligative properties
5.6 Phase equilibria involving vapour pressure
6 Acids and Bases
6.1 Properties of Lowry–Brønsted acids and bases
6.2 ‘Strong’ and ‘weak’ acids and bases
6.3 Titration analyses
6.4 pH buffers
6.5 Acid–base indicators
7 Electrochemistry
7.1 Introduction to cells: terminology and background
7.2 Introducing half-cells and electrode potentials
7.3 Activity
7.4 Half-cells and the Nernst equation
7.5 Concentration cells
7.6 Transport phenomena
7.7 Batteries
8 Chemical kinetics
8.1 Kinetic definitions
8.2 Qualitative discussion of concentration changes
8.3 Quantitative concentration changes: integrated rate equations
8.4 Kinetic treatment of complicated reactions
8.5 Thermodynamic considerations: activation energy, absolute reaction rates and catalysis
9 Physical chemistry involving light: spectroscopy and photochemistry
9.1 Introduction to photochemistry
9.2 Photon absorptions and the effect of wavelength
9.3 Photochemical and spectroscopic selection rules
9.4 Photophysics: emission and loss processes
9.5 Other optical effects
10 Adsorption and surfaces, colloids and micelles
10.1 Adsorption and definitions
10.2 Colloids and interfacial science
10.3 Colloid stability
10.4 Association colloids: micelles