Nanoscale Reduction of Graphene Fluoride via Thermochemical Nanolithography Pubs.acs.org
Graphene nanoribbons (GNRs) would be the ideal building blocks for all carbon electronics; however, many challenges remain in developing an appropriate nanolithography that generates high-quality ribbons in registry with other devices. Here we report direct and local fabrication of GNRs by thermochemical nanolithography, which uses a heated AFM probe to locally convert highly insulating graphene fluoride to conductive graphene. Chemically isolated GNRs as narrow as 40 nm show p-doping behavior and sheet resistances as low as 22.9 KΩ/□ in air, only approximately 10× higher than that of pristine graphene. The impact of probe temperature and speed are examined as well as the variable-temperature transport properties of the GNR.
Nanoscale Reduction of Graphene Fluoride via Thermochemical Nanolithography
Woo-Kyung Lee, Michael Haydell, Jeremy T. Robinson, Arnaldo R. Laracuente, Elena Cimpoiasu, William P. King, and Paul E. Sheehan
ACS Nano 2013 7 (7), 6219-6224
Woo-Kyung Lee, Michael Haydell, Jeremy T. Robinson, Arnaldo R. Laracuente, Elena Cimpoiasu, William P. King, and Paul E. Sheehan
ACS Nano 2013 7 (7), 6219-6224
Fuente: Pubs.ACS.org
No hay comentarios:
Publicar un comentario
Bienvenido a Avibert.
Deja habilitado el acceso a tu perfil o indica un enlace a tu blog o sitio, para que la comunicación sea mas fluida.
Saludos y gracias por comentar!