Ir Arriba Ir abajo


Bienvenidos en chino
Mobbing-acoso laboral-IRG
contador de visitas

Adios Año 2014!!! Bye Bye 2014

Arduino Minitutorial

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.
Arduino

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

El hardware consiste en una placa con un microcontrolador Atmel AVR y puertos de entrada/salida. Los microcontroladores más usados son el Atmega168, Atmega328, Atmega1280, ATmega8 por su sencillez y bajo coste que permiten el desarrollo de múltiples diseños. Por otro lado el software consiste en un entorno de desarrollo que implementa el lenguaje de programación Processing/Wiring y el cargador de arranque que es ejecutado en la placa.

Desde octubre de 2012, Arduino se usa también con microcontroladoras CortexM3 de ARM de 32 bits, que coexistirán con las más limitadas, pero también económicas AVR de 8 bits. ARM y AVR no son plataformas compatibles a nivel binario, pero se pueden programar con el mismo IDE de Arduino y hacerse programas que compilen sin cambios en las dos plataformas. Eso sí, las microcontroladoras CortexM3 usan 3,3V, a diferencia de la mayoría de las placas con AVR que generalmente usan 5V. Sin embargo ya anteriormente se lanzaron placas Arduino con Atmel AVR a 3,3V como la Arduino Fio y existen compatibles de Arduino Nano y Pro como Meduino en que se puede conmutar el voltaje.

Arduino se puede utilizar para desarrollar objetos interactivos autónomos o puede ser conectado a software tal como Adobe Flash, Processing, Max/MSP, Pure Data. Las placas se pueden montar a mano o adquirirse. El entorno de desarrollo integrado libre se puede descargar gratuitamente.

Arduino puede tomar información del entorno a través de sus entradas analógicas y digitales, puede controlar luces, motores y otros actuadores. El microcontrolador en la placa Arduino se programa mediante el lenguaje de programación Arduino (basado en Wiring) y el entorno de desarrollo Arduino (basado en Processing). Los proyectos hechos con Arduino pueden ejecutarse sin necesidad de conectar a un computador.

El proyecto Arduino recibió una mención honorífica en la categoría de Comunidades Digital en el Prix Ars Electrónica de 2006.

Fuente: TutoElectro

Medición de la Porosidad Tecnología Petrolera

Clic en la imagen

En el laboratorio se utilizan procedimientos e instrumentos, porosímetros, para medir la porosidad. Los núcleos de las formaciones o muestras del ripio que se obtienen en el curso de la perforación de un pozo son traídos al laboratorio, donde son debidamente identificados y catalogados para medirles el volumen total, el volumen que representan sus granos y el volumen de los poros. Mediante la aplicación de métodos analíticos se obtienen dos valores muy importantes: la porosidad total y la porosidad efectiva. La porosidad total permite apreciar la configuración irregular de los granos de las muestras y llegar a la determinación del volumen efectivo de poros, lo que se traduce en:


Porosímetro serie DC
Más adelante veremos los adelantos en la medición directa y continua de ciertas características de las formaciones. Se utilizan instrumentos que dentro del hoyo y mediante las propiedades del fluido de perforación captan de abajo hacia arriba, a lo largo de toda la profundidad, el flujo de corrientes de fuerzas electromotivas que quedan plasmadas como curvas en un registro o perfil para luego ser interpretadas cualitativa y/o cuantitativamente para evaluar, en primer término, las posibilidades de producción de hidrocarburos de las formaciones. También hay registros o perfiles que permiten interpretar los resultados de trabajos que se hacen durante la perforación y la terminación del pozo o posteriormente en las tareas de limpieza, rehabilitación o reterminación del pozo en sus años de vida productiva hasta abandonarlo.

Porosimètre max. 400 kPa | Pascal 140 Thermo Scientific - Scientific Instruments and Aut

Fuente: "El Pozo Ilustrado" - FONCIED

Tiro con Arco Infografía Salud
Consumer Eroski


Fuente: Eroski Consumer

Visual Basic.Net 2010 & 2012 Tercera Parte
Videotutorial

Curso de Visual Basic.Net 2010 & 2012, donde se cubren los aspectos fundamentales de la programacion Net, tanto para quienes se inician en la programación con este Lenguaje así como para los que migran de versiones anteriores como Visual Basic 6.0
Visual Basic.Net 2010 & 2012

Curso de Visual Basic.Net 2010 & 2012, donde se cubren los aspectos fundamentales de la programacion Net, tanto para quienes se inician en la programación con este Lenguaje así como para los que migran de versiones anteriores como Visual Basic 6.0

Ver también:P1P2

Fuente: Código Facilito

Efecto de las Altas Presiones sobre los Componentes del Alimento Tecnología de Altas Presiones
Téc. Magali Parzanese


Agua
El aumento de la presión ocasiona cambios en las propiedades tanto físicas como químicas del agua. Respecto a las primeras, se puede mencionar la disminución del volumen y la modificación de la estructura de los cristales de hielo. En cuanto a la química del agua, la presión modifica su disociación iónica aumentando la proporción de ácidos débiles disueltos, lo cual provoca la reducción del pH.

Hidratos de Carbono
Los tratamientos por altas presiones no producen cambios sobre aquellos hidratos de carbono de bajo peso molecular.

Sin embargo el almidón si sufre modificaciones debido a este tratamiento, principalmente se altera la estructura del gránulo y se produce su gelatinización. La magnitud y proporción de estos cambios dependen directamente de la cantidad de agua presente en la matriz del alimento.

Además aquellas reacciones químicas o enzimáticas que involucran hidratos de carbono también se ven afectadas por las altas presiones, tal es el caso de la reacción de Maillard. Estas reacciones son inhibidas a presiones en el rango de 50 – 200 MPa, como consecuencia no se originan el sabor y olor típico producto de dicha reacción. Esto último es en algunos casos provechoso, pero en otros puede resultar un inconveniente, dependiendo del tipo de producto y de cada caso en particular.

Proteínas
Las condiciones de alta presión causan modificaciones en las estructuras cuaternarias, terciarias y secundarias de las proteínas, y provocan por lo tanto el desdoblamiento de sus cadenas y la consecuente desnaturalización.

El efecto sobre los distintos niveles de organización estructural de la proteína depende de la magnitud de la presión ejercida:
  • Estructura Cuaternaria: Se altera con presiones próximas a los 200 MPa o mayores
  • Estructura Terciaria: Se modifica a presiones cercanas a los 500 MPa
  • Estructura Secundaria: Se requieren presiones mayores a los 800 MPa para modificar este nivel estructural
Lípidos
Las consecuencias directas de exponer a condiciones de alta presión a los lípidos son el aumento en la temperatura de fusión y en las reacciones de oxidación.

Respecto a la variación en la temperatura de fusión se puede afirmar que se observa un incremento en 10 °C por cada 100 MPa de cambio en l a presión. Esto provoca generalmente la cristalización de aquellos lípidos que antes de la presurización se encontraban en estado líquido, con una disposición de cristales más estable. Debido a que los lípidos son uno de los principales componentes de las paredes y membranas de los microorganismos, esta cristalización llega a causar cambios en la permeabilidad y estructura de dichas membranas, y finalmente la muerte o inactivación de aquellos.

Por otro lado se observa el aumento en la oxidación de los lípidos insaturados presentes en la matriz alimenticia. Aunque aún no se ha confirmado completamente, es probable que esto se deba a la mayor concentración de iones metálicos libres, los cuales actúan como catalizadores en las reacciones de oxidación, y son producto de la desnaturalización de proteínas originada del mismo modo por la exposición del producto a altas presiones.

Ver también:1234567

Fuente:
alimentos argentinos

Componentes de un Satélite INVAP
Científicos Industria Argentina

INVAP es una empresa dedicada al diseño y construcción de sistemas tecnológicos complejos, con una trayectoria de casi cuarenta años en el mercado nacional y treinta en la escena internacional. Su misión es el desarrollo de tecnología de avanzada en diferentes campos de la industria, la ciencia y la investigación aplicada, creando “paquetes tecnológicos” de alto valor agregado tanto para satisfacer necesidades nacionales como para insertarse en mercados externos a través de la exportación.
Componentes de un Satélite - INVAP

INVAP es una empresa dedicada al diseño y construcción de sistemas tecnológicos complejos, con una trayectoria de casi cuarenta años en el mercado nacional y treinta en la escena internacional. Su misión es el desarrollo de tecnología de avanzada en diferentes campos de la industria, la ciencia y la investigación aplicada, creando “paquetes tecnológicos” de alto valor agregado tanto para satisfacer necesidades nacionales como para insertarse en mercados externos a través de la exportación.

Fuente video: TV Pública - Argentina

Reología de una Dispersión Sedimentación de Partículas en las Dispersiones Líquidas


Existe una gran variedad de productos que pueden clasificarse como dispersiones líquidas. Esto se debe a que las dispersiones acuosas tienen varias ventajas; por ejemplo un nivel de viscosidad más bajo en comparación con las soluciones de concentración de soluto, y a que el agua es más aceptable que los solventes orgánicos. Uno de los requerimientos más importantes para estos productos es que la fase dispersa permanezca estable y no sedimente durante varios meses o incluso durante años. Los fabricantes necesitan producir productos estables. Los productos inestables no solo resultan costosos para su manufactura, sino, como en el caso de los medicamentos, pueden resultar perjudiciales para el paciente.

Algunas de las pruebas de estabilidad que se realizan en la actualidad insumen períodos de prueba demasiado prolongados y aquellos ensayos de envejecimiento acelerado pueden no ser confiables. Si la prueba de estabilidad no es conducida de manera adecuada, se corre el riesgo de que el producto sea inestable. Por lo tanto, es imperioso contar con una herramienta rápida para el análisis de estabilidad de las dispersiones líquidas. Los expertos en reología y los científicos que trabajan con coloides han logrado un progreso considerable en la compresión de las relaciones entre la reología de las dispersiones liquidas, las soluciones de polímeros, los fluidos complejos y su físico química, estructura y morfología. Específicamente, los mayores avances se realizaron en establecer una relación entre la reología de las dispersiones y la velocidad de agregación de las partículas. A lo largo de los años se desarrollaron diversas teorías los modelos de flóculos, como Rouse, DLVO para coloides de carga estabilizada y la ecuación de Poisson-Boltzmann et al.. En el mejor de los casos, estas teorías son semi cuantitativas, debido a sus supuestos simplificados. Para obtener mayor información, vea las referencias [1-5].

Los experimentalistas se beneficiaron con estas teorías debido a que las mismas colaboran en el diseño de las pruebas reológicas adecuadas, y en el análisis de los resultados. Lo más revelador es que las dispersiones líquidas son formaciones complejas de partículas, llamadas flóculos, atraídas por las fuerzas van der Waal más cercanas y las interacciones hidrodinámicas. Las dispersiones son fluidos reológicamente complejos que combinan los comportamientos viscosos y elásticos, que pueden ser descriptos por un espectro viscoelástico – un barrido de frecuencia oscilatoria. Un espectro completo debe cubrir todos los tiempos de relajación, de modo tal que la dependencia de frecuencia de las funciones del material, el almacenamiento y los módulos de pérdida, se extiendan hasta las regiones de "plateau", terminal del espectro. Las mediciones de velocidad regular de cizallamiento también son de gran valor para determinar la hidrodinámica de las dispersiones.

La estabilidad de la dispersión de una partícula dependerá del equilibrio entre las fuerzas de atracción y repulsión que experimentan cuando se aproximan entre sí. Para mantener la estabilidad de la dispersión, deben dominar las fuerzas repulsivas. Los técnicos usan varias aproximaciones para estabilizar las partículas dispersas en líquidos. Los métodos más comunes para estabilizar partículas en suspensiones acuosas son las estructuras de red, electroestáticas y estiáricas. Recientemente, se realizaron informes que indican que la incorporación de nanopartículas en los coloides mejora la estabilidad. [6].

La estabilización electroestática afecta las interacciones de la partícula debido a la distribución de las especies cargadas en el sistema y puede estar influenciada por varios factores tales como el pH y/o la concentración y el tipo de electrolito presente. Estas variables influyen fuertemente en las propiedades reológicas de las dispersiones y en la estabilidad. Un balance apropiado de las fuerzas de atracción y repulsión es el método primario para lograr una suspensión estable.

La interacción electroestática entre las partículas coloidales está directamente relacionada al potencial zeta de la muestra. La magnitud del valor del potencial zeta es una indicación de la fuerza repulsiva electroestática presente y puede utilizarse para predecir la estabilidad a largo plazo del producto. [7]. El efecto del pH o de la fuerza iónica del medio o la concentración de un aditivo en el potencial zeta y la reología de la muestra pueden brindar información para maximizar la estabilidad de una formulación. Para que la reología experimental juegue un papel significativo en la predicción de la estabilidad de una dispersión de partículas en un medio líquido, la técnica de medición debe ser sensible a diferencias viscoelásticas extremadamente pequeñas o cambios fisicoquímicos y estructurales de la dispersión. Esto permite la efectiva investigación de la muestra en reposo.

Fase experimental y discusión de resultados
En este artículo analizaremos un estudio en dos dispersiones muy similares, que denominaremos muestra A y muestra B. La muestra A sedimenta mas rápidamente que la muestra B, pero ambas sedimentan tan lentamente que habrá que esperar varios meses para observar alguna diferencia en la vida de estante. El objetivo de este artículo es mostrar de qué manera la reología puede probar e identificar las diferencias de estabilidad.

Ambas muestras son coloides de carga estabilizada con 25wt. % de partículas dispersas, a las que se le realizaron las siguientes mediciones: barridos de tiempo de frecuencia simple oscilatoria, barridos de amplitud y barridos de frecuencia en un rango de temperatura de 5 a 35°C. Finalmente, las curvas maestras están preparadas para extender el módulo de almacenamiento (G'∞) a la región plana de sus espectros viscoelásticos. Para poder analizar la estabilidad de la dispersión es crítico extender la región de alta frecuencia mas allá del límite superior típico de un reómetro rotacional (ver también Lionberger y Russel [8] y Shikata y Pearson [9]). Más adelante analizaremos este tema con mayor profundidad. Para generar curvas maestras es importante que no cambie la fase de la muestra dentro del rango de temperatura de medición. Para la identificación se debe inspeccionar la curva maestra y asegurar que el factor de cambio funcione igual de bien tanto en el almacenamiento como en los módulos de pérdida.

La primera prueba a realizar en una muestra desconocida es el barrido de tiempo de frecuencia simple oscilatoria, para determinar el tiempo que la muestra necesita para alcanzar y mantener la estabilidad. Este tiempo, permitirá la reconstrucción de la estructura posible a partir de la carga de la muestra e indicará cualquier efecto de la evaporación apreciable del solvente. En las muestras A y B tardó tres minutos en alcanzar un valor G' constante. Si la muestra no logra un valor estable no debería realizarse ninguna otra prueba. El siguiente ensayo es el barrido de amplitud. El propósito de este ensayo es determinar la región viscoelástica lineal (la cantidad de muestra que puede tensarse sin modificaciones en su estructura). La tensión donde G' comienza a disminuir es la tensión crítica. Si la estructura intrínseca de una muestra debe ser medida a través de la reología, la prueba debe llevarse a cabo por debajo de esta tensión crítica. Se realizaron una serie de barridos de amplitud con rangos de temperatura de 5 a 35°C y frecuencias de 1 a 50Hz.

La Figura 1 muestra los barridos de amplitud de ambas muestras probadas a 25°C y 1Hz. La tensión crítica es 0.22 unidades de tensión para ambas muestras. Se observan diferencias muy leves en las funciones del material, el almacenamiento y el módulo de pérdida. El siguiente es el barrido de frecuencia. Esta prueba es de fundamental interés porque G' está directamente relacionada con las fuerzas inter -particulares. A partir de la teoría desarrollada por Bergenholtz et al [10], la relación entre el módulo de región plana de alta frecuencia y el potencial de interacción está dada por la formula Zwanzig y Mountain [11].

La siguiente ecuación relaciona el modulo de almacenamiento de frecuencia alta, G'∞, con la interacción del potencial entre las partículas:


donde a es el radio de la partícula, Ф es la fracción de volumen de las partículas, g(r) es la función de distribución radial y ψ(r) es el potencial de interacción entre las partículas. El módulo de almacenamiento refleja el potencial de interacción entre las partículas, cuando la escala de tiempo de los tiempos de relajación de movimiento Browniano de las partículas es prolongada, en comparación con la escala de tiempo de frecuencia; en términos más simples cuando es un número Deborah alto. Por lo tanto, para predecir una dispersión más estable hace falta un valor G' elevado a frecuencias altas (por encima de 100 Hz).


Los barridos de frecuencia en cada temperatura fueron realizados a una tensión de 0.1 unidades para continuar dentro de una región viscoelástica lineal. El objetivo de esta prueba es determinar las características de relajación de las unidades de flujo, partículas y flóculos, como así también sus interacciones complejas.


En la Figura 2 se observa una comparación de la dependencia de la frecuencia de las funciones de los materiales para las muestras A y B. Estos gráficos son idénticos a 25°C. Las funciones viscoelásticas están dominadas por la reología de las unidades de fluidez de flóculos discretos. Los módulos de pérdida y de almacenamiento (G' y G'' respectivamente) se aproximan a una pendiente limitante sobre una escala doble logarítmica, definiendo la región final. Estamos frente a una excepción cuando los flóculos se asocian formando una estructura de red, y en ese caso G' se estanca a frecuencias decrecientes.


Para las muestras A y B es necesario llevar a cabo pruebas que revelen las interacciones entre flóculos. Estos resultados se encuentran en la región plana del espectro viscoelástico donde las relajaciones Brownianas disminuyen. En el caso de las unidades de flóculos sujetas a frecuencias bajas, la auto difusión originada por el movimiento de traslación Browniana, domina y previene un desorden ocasionado por los planos de corte. Es comprensible que la escala de tiempo para ordenar el estado de reposo de las unidades de fluidez sea de milisegundos o menor en el caso de las dispersiones acuosas de baja viscosidad. Por lo tanto, para determinar el efecto neto de las fuerzas de atracción y repulsión es necesario determinar el valor de los módulos de almacenamiento en la región Plana de alta frecuencia (en el rango de 200Hz para estas muestras). El único modo de lograrlo es con un algoritmo de superposición de tiempo y temperatura para calcular las curvas maestras para las dos muestras, A y B.

Los cambios horizontales de los datos de frecuencia y temperatura a 35°C, como temperatura de referencia revelan el motivo clave por el cual la fase dispersa de la muestra A sedimenta con mayor rapidez que en la muestra B.


La Figura 3 muestra la curva maestra para la muestra B, y la Tabla 1 presenta los datos comparativos.¡Observe un Error!
  • Fuente de Referencia no encontrada
  • que los datos de frecuencia baja son casi idénticos para las muestras A y B.
A medida que la frecuencia aumenta, se presentan diferencias mayores en los módulos de almacenamiento. A 200Hz los módulos de almacenamiento G' de la muestra B son de 48.59Pa y en la muestra A son de 39.97Pa. Esto significa que la muestra B tiene una carga de potencia de interacción de mayor efectividad que la muestra A, a partir de la fórmula Zwanzig y Mountain.


Las mediciones del barrido de tasa estable también fueron llevadas a cabo, como se muestra en la Figura 3. El comportamiento de las dos muestras es prácticamente el mismo a lo largo de casi la totalidad del rango de velocidad de cizallamiento de 0.1 a 500s-1. La relación Cox-Mertz (velocidad de cizallamiento relacionada con frecuencia oscilatoria) no necesariamente contiene las dispersiones porque los campos de cizallamiento regular y oscilatorio no tienen la misma estructura de unidad de fluidez.

Conclusiones
La reología experimental puede identificar rápidamente las funciones materiales importantes que controlan la estabilidad de las dispersiones líquidas siempre que el espectro viscoelástico cubra la región de plana de alta frecuencia. Para lograrlo deben producirse curvas maestras válidas. Para asegurar la validez de los análisis, es necesario realizar todas las mediciones en la región viscoelástica lineal en un nivel que este bien por debajo de la tensión critica.

Referencias:

1. Firth, A.B. and Hunter, R.J., Journal of Colloid and Interface Science, Vol. 57, No.2, 248 (1976).
2. Van der Vorst, B. and coworkers, Rheol. Acta, Vol. 34, 274 (1995).
3. Behrens, S.H., Langmuir 2000, Vol.16, 2566 (1999).
4. Mewis, J., Advances in Colloid and Interface Science, Vol. 6, 173 (1976).
5. Russel, W.B., J. Rheology, Vol. 24, No.3, 287 (1980).
6. Tohver, V. and coworkers, http://www.pnas.org/cgi/doi/10.1073/pnas.1510630987.
7. Puede encontrar más información sobre la medición y el uso del potencial zeta en http://www.malvern.com/
8. Lionberger, R.A., and Russel, W.B., J. Rheology, Vol. 38, 1885 (1994).

Malvern Instruments Ltd
Enigma Business Park • Grovewood Road • Malvern • Worcestershire • UK • WR14 1XZ • Tel: +44 (0)1684 892456 • Fax: +44 (0)1684 892789

Malvern Instruments Worldwide
Centros de Ventas y Servicio técnico en más de 50 países, para obtener más informacion visite:
www.malvern.com/contact


Para mayor información:
C.A.S. Instrumental S.R.L.
Iberá 2990, Buenos Aires, Argentina
Teléfono: (54-11) 4544-4011/2037 / 4546-2200
consultas@cas-instrumental.com.ar
www.cas-instrumental.com.ar

Tecnología de Productos Cárnicos Crudo-Curados Universidad Miguel Hernández de Elche

Clic en la imagen

Fuente: Universidad Miguel Hernández de Elche

Sistema de Recirculación por Acuicultura –SRA Descripción del funcionamiento
CENADAC - Pablo Caló


Un SRA, es un sistema a través del cual se pueden cultivar organismos acuáticos en forma intensiva. Esto implica utilizar pequeños espacios para lograr altas producciones, a través de la aplicación de tecnologías de tratamiento del agua. Existen una gran cantidad de filtros utilizados en el tratamiento de agua, y si bien no es la intención de la presente recopilación ahondar en este tema, se separarán los dos grupos principales utilizados en acuaponia y que son los mecánicos y los biológicos.

Los filtros mecánicos se sitúan inmediatamente a continuación del tanque que contendrá los peces y se destinan a eliminar todas las partículas sólidas en suspensión que existan en el sistema.

Si dichos sólidos quedaran dentro del sistema, taparían cualquier otro filtro que se intente colocar, y en un corto plazo, se interrumpiría el correcto funcionamiento del sistema. Es por esto, que los sólidos en suspensión son los primeros en eliminarse en un sistema de recirculación.

Los filtros biológicos, se colocan a continuación de los mecánicos y se emplean con el objetivo de transformar biológicamente los desechos metabólicos generados por los peces. A partir de ellos, se obtienen sustancias menos tóxicas que puedan permanecer en el sistema. Este proceso, se lleva a cabo por medio de las bacterias que crecen sobre el filtro, en presencia de los desechos metabólicos. Estas bacterias, requieren de una superficie de contacto donde alojarse. En resumen, un filtro biológico es una estructura que posee en muy poco lugar, una gran superficie de contacto, donde con el tiempo, se alojan las bacterias necesarias para la filtración. Más allá de la filtración que pueda existir en un sistema de recirculación, es necesaria una mínima renovación de agua en el mismo (5% - 10%), con la finalidad de mantener los parámetros físico-químicos en niveles tolerables para los peces.

Ver tambien:1

Fuente: Minagri

Día de la Educación Técnica Canal Encuentro


Se celebra el 15 de noviembre porque ese día de 1959 se creó el Consejo Nacional de Educación Técnica (CONET).

Fuente: Canal Encuentro

Sé lo Básico de Electrónica, ¿Ahora Qué? TutoElectro

Clic en la imagen

Fuente: TutoElectro

Una Nueva Mentalidad en la Alimentación Marco Antonio Regil
TEDxDelValle


Marco Antonio Regil es un exitoso conductor mexicano de Televisión.

Vegano desde 2008 y activista por los derechos de los animales, personas con discapacidad y promueve la educación financiera.

Maestro en Psicología Espiritual de la Universidad de Santa Mónica, California y certificado como maestro de yoga y meditación con Sri Dharma Mittra en Nueva York.

Fuente: TEDx Talks

Definiciones y Fundamentos de la tecnología de las APH Aplicación de Altas Presiones
Téc. Magali Parzanese

Altas presiones hidrostáticas, definiciones y fundamentos

Las presiones utilizadas en la industria alimentaria son del orden de los 300 a 700 MPa, cabe aclarar que el valor de la presión atmosférica a nivel del mar es del orden de los 0,101325 MPa, de lo que se deduce el motivo de la denominación de “Altas Presiones” a esta tecnología.

Cuando el medio transmisor de presión es el agua se denominan altas presiones hidrostáticas, las cuales son las más utilizadas en las industrias.

El tratamiento de los alimentos se puede llevar acabo sobre los productos ya envasados, si se cumple que los materiales de dicho envase sean lo suficientemente flexibles, impermeables al agua y posean cierre hermético. Este tratamiento se caracteriza por actuar de forma instantánea y uniforme sobre cada uno de los puntos del producto, lo cual independiza la dimensión y características geométricas del alimento a la efectividad del proceso. De esta forma es posible reproducir en todos los lotes los mismos efectos y resultados favorables.

Principios teóricos y científicos en los que se basa esta tecnología:
  • Principio de LeChatelier: Este principio establece que cuando un sistema químico se encuentra en condiciones de equilibrio y experimenta un cambio o variación en su concentración, temperatura, volumen o presión parcial; el sistema modificará sus condiciones para contrarrestar dicho cambio. Específicamente la aplicación de alta presión sobre un sistema provoca un desplazamiento del equilibrio hacia el estado en que ocupa menos volumen.
  • Proceso Isotáctico: Este principio se refiere a la transmisión uniforme e instantánea a través de todo el material tratado por alta presión, esto evita la generación de zonas que presenten mayores niveles de tratamiento, lo que ocasionaría una deformación y pérdida de integridad del producto.

Ver también:123456

Fuente:
alimentos argentinos

ARSAT 1 Primer Satélite Argentino
El momento del lanzamiento

Clic en la imagen

Fuente: TV Pública - Argentina

Helicobacter Pylori (Ulcer) Microbiology


Fuente: Armando Hasudungan

El Cerebro Automático La magia del inconsciente

Clic en la imagen

El ser humano es impulsado por su mente inconsciente. El cerebro humano siempre está en automático y decide las cosas antes de que se piensen. Aún así es facil engañar a nuestro cerebro.

Premio Nobel de Medicina John O'Keefe - May-Britt Moser y Edvard I. Moser


Clic en la imagen

El estadounidense John O'Keefe y los noruegos May-Britt Moser y Edvard I. Moser ganaron este lunes el Premio Nobel de Medicina 2014 por descubrir el "GPS interno" del cerebro que posibilita la orientación en el espacio.

Efluentes Líquidos un ejemplo de empresa destacable


En este artículo haremos mención a una empresa específica cuya obra es digna de ser señalada. Se trata de la Avícola Pollolín que mediante una inversión de 11 millones de pesos desarrolló una planta de tratamiento de sus residuos líquidos en la meseta ubicada del otro lado del canal principal de riego. Extendiendo 7 kilómetros de una cañería de 300 milímetros y un caudal de 150 metros cúbicos por hora para llevar esas aguas residuales a los terrenos del noroeste de la ciudad donde la empresa desarrolla un proyecto forestal y avanza con los criaderos de pollos. El emprendimiento tiene como propósito: mejorar los efluentes industriales de la planta ubicada en el norte de Cipolletti, ampliar la planta de tratamiento frente al crecimiento en la producción e irrigar por goteo y previa filtración 45 hectáreas de sauces cuya forestación avanza más allá de las fronteras agrícolas del Valle.

Además el agua aportaría a la plantación el material orgánico que los suelos de la meseta no contienen. De los 75.000 a 80.000 pollos que se procesan todos los días en la planta de Pollolín se usa absolutamente todo: la sangre del pollo se transforma en harina mediante un biodigestor, lo mismo que las vísceras y las plumas. La grasa contenida en el agua se separa posteriormente en piletas de donde se extrae como una capa sólida superficial. El único residuo que tiene la planta es el agua que si bien no contiene productos tóxicos, alteraría la calidad del cuerpo receptor en caso de no ser tratada.


En nuestro laboratorio realizamos los controles correspondientes y seguimientos mensuales de las mencionadas aguas residuales, analizando parámetros tales como DBO, DQO, pH y conductividad desde la entrada a la planta de tratamiento, pasando por la salida de las lagunas anaeróbicas a la salida de las lagunas facultativas primarias, hasta llegar finalmente a la salida de las lagunas facultativas secundarias y el fin del tratamiento, constatando la eficiencia del tratamiento.

En cuanto al DQO se refiere, el cual se define por la cantidad de oxígeno necesario para oxidar la totalidad de la materia oxidable (tanto orgánica como mineral), obtuvimos valores que disminuyeron en un 94% con respecto a su valor inicial luego de ser tratados.

Si las aguas no fuesen tratadas generaría un impacto ambiental negativo debido a que los microorganismos patógenos de las aguas residuales convierten las aguas naturales en las que desaguan en inseguras como fuentes de suministro, la descomposición de la materia orgánica inestable despojaría al agua de su oxígeno y por lo tanto los peces morirían y la putrefacción de las materias orgánicas produciría olores y condiciones desagradables, hasta afectar adversamente las propiedades del agua.

El sistema de tratamiento por lagunas está basado en varios tipos de lagunas conectadas en serie, en paralelo o en una combinación de ambas, siendo un procedimiento eficiente para depurar las aguas servidas. Requiere de una gran inversión inicial y se necesita gran cantidad de espacio físico para su instalación, pero a largo plazo no son costosas de mantener y son sencillas de operar. Requieren muy poco o nulo suministro de energía, dado que tanto la remoción de materia orgánica como la disponibilidad de oxígeno están vinculadas a procesos naturales debidos a la reproducción de algas en las lagunas facultativas y procesos fotosintéticos.


Sólo se requiere energía para bombear el líquido residual a la primera laguna. Generan muy poco barro y debido a los prolongados tiempos de tratamiento son muy buenos sistemas de ecualización. Remueven eficientemente microorganismos patógenos, por lo que son consideradas la mejor tecnología para la obtención de agua para riego. Actualmente las lagunas funcionan como planta de tratamiento del desagüe industrial y además han alojado a varias especies de aves que han encontrados allí un nuevo hábitat.

Debemos fomentar el tratamiento adecuado de las aguas residuales no sólo industriales sino también domiciliarias y concientizar a la población acerca del impacto nocivo que genera en nuestro medio ambiente el volcado indiscriminado y despreocupado de efluentes.

Esta nota ha sido proporcionada por CALIBA, Cámara Argentina de Laboratorios Independientes, Bromatológicos, Ambientales y Afines.

Más información:
CALIBA
Av. de Mayo 981, 2º Piso, Of.
220 (C1084AAE), Buenos Aires, Arg.
Tel.: (54-011) 5274-0444
info@caliba.org.ar
www.caliba.org.ar