Ir Arriba Ir abajo


Bienvenidos en chino
Mobbing-acoso laboral-IRG
contador de visitas

A Self-Healing Sweat Sensor Headlinec Science

Los Orígenes de INVAP y CONAE Conrado Franco Varotto


Conrado Franco Varotto nació en Italia. Vino a la Argentina en su infancia. Estudió en el Instituto Balseiro, en donde se doctoró en 1968.

Luego hizo un posdoctorado en la Universidad de Stanford entre 1968 y 1970. A su regreso creó en el Centro Atómico Bariloche el Programa de Física Aplicada, que, unos años después, derivó en la fundación de INVAP. Fue Gerente General y Técnico de INVAP desde su creación en 1976 hasta 1991.

Desde 1994 hasta 2018 fue Director Ejecutivo y Técnico de la Comisión Nacional de Actividades Espaciales. Ha recibido numerosas distinciones, entre ellas el Premio Konex de Platino en 1993. Es desde 1989 miembro de la Academia Nacional de Ciencias.

Pocas personas en la Argentina han tenido un rol tan destacado en el nacimiento de organizaciones tan relevantes para el desarrollo de la ciencia y la tecnología en el país.

Fuente: TMT Comunica

Aporofobia Fobia a los pobres - Adela Cortina


"No hay ningún ser humano que no tenga nada valioso que ofrecer". Adela Cortina nos presenta una nueva palabra, ‘aporofobia’: el miedo o rechazo hacia la pobreza y hacia las personas sin recursos. Incorporada por la RAE a su diccionario recientemente, Cortina presenta los significados sociales y éticos que engloba dicha palabra. Más información http://www.tedxupvalencia.com/

Catedrática Emérita de Ética y Filosofía Política de la Universitat de València, miembro de número de la Real Academia de Ciencias Morales y Políticas y Doctora Honoris Causa por la Universitat Politécnica de València y diversas universidades. Trabaja en temas como ciudadanía, democracia o cosmopolitismo, y en la aplicación de la ética a la economía y la empresa, a la ciencia, la técnica, la política, el desarrollo humano, la bioética, los medios de comunicación o la educación.

Fuente: TEDx Talks

Conocer el cerebro para vivir mejor Facundo Manes, neurocientífico


En Estados Unidos, el 40% de la sociedad se siente sola de forma crónica en algún momento de la vida. Inglaterra acaba de crear un Ministerio de la Soledad... No porque sean amantes de la neurociencia los del gobierno inglés, sino porque saben, tienen datos, tienen evidencia científica de que la soledad es muy frecuente y que produce problemas de salud que tienen un costo enorme para la sociedad".

En este vídeo, el neurocientífico Facundo Manes explica las claves para mantener en forma al cerebro, cómo surge la creatividad, el "momento eureka" y cómo aprendemos y olvidamos.

Facundo Manes ha dedicado gran parte de su trayectoria profesional a descifrar los secretos del cerebro, actividad que sigue desarrollando como investigador del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Argentina y del departamento Cognition and Brain Sciences de Cambridge.

A mis hijos les digo: "Estudiá, porque además de que te va a permitir ser más libre y tener más oportunidades, cumplir tus sueños, levantar la autoestima, adaptarte a un mundo en permanente cambio... además de todo eso, va a proteger tu cerebro”, reflexiona el neurocientífico.

Fundador del Instituto de Neurología Congnitiva (INECO) y del Instituto de Neurociencias de la Fundación Favaloro en Buenos Aires, el doctor Manes es autor de libros como ‘El cerebro del futuro’ y ‘Usar el cerebro’, donde explica el funcionamiento de nuestra materia gris.

Fuente: AprendemosJuntos

Infinite Patterns Cristóbal Vila - Etereaestudios.com

XXX Congreso Internacional de la Caña de Azúcar ISSCT - SATCA

Una Oración por El Amazonas Cuándo aprenderemos a respetar a la Naturaleza...

La Estación Espacial Internacional ¿Cómo funciona?


Este video educativo muestra a una astronauta de la NASA en un recorrido dentro de la Estación Espacial Internacional (ISS) flotando entre cada módulo presurizado, explicando y demostrando instrumentos científicos, limpiándose los dientes, bebiendo agua y usando el baño, todo volando en gravedad cero.

Nitratos y Nitritos en los Alimentos Efectos en la Salud y Qué Son


Los nitratos y nitritos en embutidos, en el agua y en los vegetales afectan a nuestra salud. Entiende los beneficios de los nitratos y nitritos como aditivos alimentarios y sus riesgos.

Fuente video: Salud Realista

Referencias:
* Song, P., Wu, L., & Guan, W. (2015). Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients, 7(12), 9872–9895. http://doi.org/10.3390/nu7125505

* Christiansen, L. N., Johnston, R. W., Kautter, D. A., Howard, J. W., & Aunan, W. J. (1973). Effect of Nitrite and Nitrate on Toxin Production by Clostridium botulinum and on Nitrosamine Formation in Perishable Canned Comminuted Cured Meat. Applied Microbiology, 25(3), 357–362. https://www.ncbi.nlm.nih.gov/pmc/arti...

* Shuval, H. I., & Gruener, N. (1972). Epidemiological and toxicological aspects of nitrates and nitrites in the environment. American Journal of Public Health, 62(8), 1045–1052. https://www.ncbi.nlm.nih.gov/pmc/arti...

* Zeynep KalaycıoğluF. Bedia Erim (june 5, 2019). Nitrate and Nitrites in Foods: Worldwide Regional Distribution in View of Their Risks and Benefits. http://pubs.acs.org/doi/abs/10.1021/acs.jafc.9b01194

Extracción de Litio De las salinas al laboratorio


El litio es un recurso estratégico para el futuro y representa un gran desafío para la investigación científica.

Desde Salinas Grandes, los investigadores nos cuentan sobre el valor del litio y luego, desde su laboratorio, relatan en qué consiste un nuevo método de extracción limpia en el que trabajan.

Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy, CIDMEJu.

Fuente: CONICET Documental

Calotropis procera (Aiton) Dryand Evaluación de la actividad antibacteriana y antifúngica
de los extractos etanólico y acuoso de sus hojas

extractos de Calotropis procera (Aiton) Dryand

AutoresMijail Mijares Bullaín Galardis
Centro de Estudios de Biotecnología Vegetal. Facultad de Ciencias Agropecuarias

Raúl Carlos López Sánchez
Centro de Estudios de Biotecnología Vegetal. Facultad de Ciencias Agropecuarias

Roberto Carlos Muñoz Leyva
Departamento de Producción Vegetal. Facultad de Ciencias Agropecuarias

José Ángel Morales León
Centro de estudios de Química Aplicada. Facultad de Ciencias Técnicas.
Universidad de Granma. Peralejo. Provincia Granma. Cuba

Róbinson Hermosilla Espinoza
Centro de estudios de Química Aplicada. Facultad de Ciencias Técnicas.
Universidad de Granma. Peralejo. Provincia Granma. Cuba

Contacto: mbullaing@udg.co.cu

Resumen
En Cuba Calotropis procera (Aiton) Dryand.se emplea como planta medicinal. De las hojas se obtuvieron los extractos etanólico y acuoso mediante la extracción asistida por ultrasonido y se llevaron a sequedad por rotoevaporación. La actividad antibacteriana y antifúngica se evaluó mediante el método de difusión en agar por diseminación superficial en disco de Bauer-Kirby con modificaciones. Los extractos no mostraron actividad frente a las bacterias Bacillus subtilis, Escherichia coli, Salmonella typhimurium y Staphylococcus aureus; y tampoco inhibieron el crecimiento de las levaduras Candida albicans y Saccharomyces cerevisiae. El tamizaje fitoquímico preliminar mostró la presencia de grupos de metabolitos secundarios con actividad antimicrobiana pero en pequeñas cantidades lo que pudo influir en los resultados obtenidos.

Palabras clave: Calotropisprocera, actividad antibacteriana, actividad antifúngica, tamizaje fitoquímico

Summary
In Cuba Calotropis procera (Aiton) Dryand is used as a medicinal plant. From the leaves, the ethanolic and aqueous extracts were obtained by ultrasound-assisted extraction and brought to dryness by rotoevaporation. The antibacterial and antifungal activity of the extracts was evaluated by means the diffusion method in agar by superficial disc dissemination of Bauer-Kirby with modifications.The extracts showed no activity against the bacteria Bacillus subtilis, Escherichia coli, Salmonella typhimurium and Staphylococcus aureus; and they also did not inhibit the growth of the yeasts Candida albicans and Saccharomyces cerevisiae. The preliminary phytochemical screening showed the presence of groups of secondary metabolites with antimicrobial activity but in small quantities which could influence the results obtained.

Keywords: Calotropis procera, antibacterial activity, antifungal activity, phytochemical screening

Introducción
Desde tiempos inmemoriales, en las diferentes culturas, el hombre ha utilizado las plantas medicinales para tratar y curar diversas enfermedades causadas por microorganismos patógenos. En la actualidad se observa un fenómeno de multirresistencia a los agentes antimicrobianos convencionales debido, entre otras causas, a su uso indiscriminado.

Esta situación, así como la aparición de efectos indeseables de ciertos antibióticos, ha llevado a los científicos a investigar nuevas sustancias antimicrobianas a partir de plantas consideradas popularmente medicinales [1].

Debido a esta problemática, una de las más serias que enfrenta la ciencia médica en la actualidad, organizaciones como la Organización Mundial de la Salud (OMS) y la Organización Panamericana de la Salud (OPS) han promovido el desarrollo de programas para la identificación, investigación, cultivo y conservación de plantas medicinales como fuente natural de principios activos para la obtención de nuevos agentes antimicrobianos.

Para realizar este trabajo resulta importante tener en cuenta el conocimiento empírico acumulado por la población en cuanto al manejo y uso de estas especies de plantas e incorporar los conocimientos técnicos especializados para optimizar estos procesos y favorecer de forma efectiva la conservación de estos importantes recursos filogenéticos [2].

La flora cubana es muy rica y variada, presenta más de un 50% de endemismo y, en algunas zonas entre el 70% y 80% de las especies tienen propiedades medicinales, sin embargo, ha sido poco estudiada, lo que ha limitado su explotación y aprovechamiento [3-5].

Calotropis procera (Aiton) Dryand., de la familia Apocynaceae, es conocida por los nombre comunes algodón de ceda, bomba, tula [6], algodón de la India [7], en Cuba se le nombra algodón americano, algodón de Judea, algodón de seda, algodón de playa, árbol de Judea, árbol de seda, cazuela, estrella de Holanda y estrella del norte [8].

Las raíces, el látex y la corteza de las raíces de la planta se emplean en la medicina tradicional para inducir el vómito y como laxante natural. Es también utilizada para combatir los síntomas provocados por diferentes enfermedades cutáneas (lepra, infecciones cutáneas bacterianas) y otras enfermedades como la sífilis [9]. Se le atribuyen también propiedades antinflamatorias y antisépticas [10].

Los reportes hallados en las fuentes consultadas sugieren que los extractos etanólico y acuoso de hojas de C. procera presentan actividad antibacteriana y antifúngica.

Ver más...

Revista QuímicaViva
ISSN 1666-7948
www.quimicaviva.qb.fcen.uba.ar
Número 1, año 18, Abril 2019
quimicaviva@qb.fcen.uba.ar

Actividad del agua Alimentos


La actividad de agua en los alimentos es un concepto que hace referencia a la cantidad de agua libre que está disponible en los alimentos para el crecimiento microbiano, se simboliza como aw (del inglés: activity of water)

actividad del agua

Ozono disuelto La medición

El ozono se ha convertido en una herramienta importante para el ingeniero de calidad del agua. A medida que se debe cumplir con requerimientos más estrictos por parte de organismos reguladores y clientes, el ozono es a menudo el oxidante y desinfectante de elección para una amplia gama de aplicaciones de proceso. Estos incluyen desinfección viral, bacteriana y parasitaria, la eliminación de compuestos que causan sabores y olores, la destrucción de materia orgánica refractaria/tóxica y la coagulación u oxidación de las impurezas inorgánicas como el hierro, el manganeso y los sulfuros1.

Con la creciente popularidad del ozono en el tratamiento del agua, surge la necesidad de un método analítico versátil y rutinario para la medición del ozono disuelto en una amplia variedad de matrices de solución. El método debe ser exacto y preciso abarcando una amplia gama de concentraciones, insensible a interferencias y fácil de usar y de eliminar. El método de trisulfonato índigo cumple con estos requisitos. Utiliza un tinte azul no tóxico que se decolora instantáneamente por acción del ozono. La interferencia del oxidante más común, el cloro, puede ser enmascarada con ácido malónico. El método está descrito en métodos estándar para el análisis de agua y aguas residuales (Método 4500-O3B)2 y diferentes empresas lo ofrecen como un producto en diversas presentaciones.

Los estándares de salud pública respecto al agua potable han contribuido a la expansión de la aplicación de ozono para el tratamiento del agua. Las normas relativas a los agentes patógenos más resistentes como ooquistes de Cryptosporidium y algunos virus, así como el descenso de las concentraciones permitidas de subproductos de desinfección (SPD) como los trihalometanos (THM) y los ácidos haloacéticos (HAA), son ejemplos de dichas normas. Para que el cloro sea eficaz en la desinfección de los patógenos más resistentes, la concentración y/o tiempo de contacto debe incrementarse más allá de lo que sería necesario para otras circunstancias. Sin embargo, esto tiende a aumentar las concentraciones de THM y HAA. Por lo tanto algunas plantas de tratamiento tienen instalados detectores de ozono para aumentar el potencial de desinfección sin la producción de SPD. Algunas condiciones pueden limitar la idoneidad de la opción del ozono. Cuando el bromo (Br-) está presente en la fuente de agua su oxidación por ozono puede provocar la producción de bromato (HNO3-), un SPD con un límite de agua potable EPA de 10 ppb3

Las plantas de tratamiento que eligen esta opción de ozono tienden a tener una mayor satisfacción del cliente debido a una mejora en otros parámetros de calidad del agua, como el color, el sabor, el olor y la claridad. El ozono también elimina impurezas inorgánicas disueltas como hierro, manganeso y sulfuro por coagulación y la oxidación de forma más eficiente que un sistema convencional de sifón. Esto permite la reducción de la dosificación de coagulante y del tiempo de contacto. La oxidación de materia orgánica refractaria o tóxicos, como ácidos húmicos y plaguicidas que pueden no ser degradables con el uso del cloro, oxidación biológica u ozono solos, a menudo puede mejorarse con ozono con complemento de peróxido de hidrógeno o radiación UV. A esto se le denomina oxidación avanzada. El peróxido de hidrógeno o la radiación UV degradan rápidamente el ozono, liberando un pulso de radicales libres extremadamente reactivos.

Aplicaciones industriales y comerciales del ozono
En 1997 se abrieron nuevos caminos para la aplicación del ozono en la industria alimentaria, cuando la Administración de Fármacos y Alimentos de Estados Unidos concedió el estado de “generalmente reconocido como seguro” (GRAS) al ozono. La limpieza de las frutas y hortalizas mediante el lavado y rociado con agua ozonizada disminuye la concentración y el volumen de residuos de DBO, el consumo total de agua y la contaminación por bacterias y hongos4. Para las carnes, aves y mariscos, el ozono puede extender la vida útil y reducir los costos de procesamiento. Generalmente, los productos son rociados con agua ozonizada, y posteriormente pueden mantenerse en una atmósfera ozonizada para disminuir aún más el deterioro y el olor.

Los métodos de producción de agua embotellada varían dependiendo del tamaño de la operación y la calidad de la fuente de agua. Sin embargo, todos los métodos para el mercado de EE.UU. deben elaborar un producto que puede pasar las normas de la FDA que se requiere sean por lo menos tan estrictas como las de salud pública requeridas por la EPA para el agua potable. Gracias a la utilización de la filtración, ósmosis inversa y absorción con carbón activado para eliminar sustancias contaminantes y naturales, y el tratamiento de ozono para la desinfección, no hubieron grandes brotes de enfermedades asociadas con el agua embotellada durante la última década en los Estados Unidos5.

En una planta de agua embotellada, el ozono se agrega al agua en la operación final justo antes del llenado de la botella. Generalmente, el gas ozono es inyectado en un gran depósito de agua hasta que alcance una concentración deseada, después es transferida a la botella. La concentración de ozono debe ser lo suficientemente alta como para matar cualquier organismo, pero lo suficientemente baja para que no dañe la botella y que no dure el tiempo suficiente como para que lo ingieran los consumidores.

Esto es aproximadamente 0.4 ppm (mg/L) de ozono6. Al igual que el agua potable de suministro público, el ozono puede introducir el subproducto de desinfectante bromato si la fuente de agua contiene una cantidad importante de bromuro.

El ozono se usa también como desinfectante y oxidante en estas aplicaciones: acuicultura (oxidación de nitrito), piscinas y spas, remediación de suelos/agua subterránea (contaminantes en el tanque de almacenamiento subterráneo), agricultura, desinfección de bodegas de vinos (limpieza de tanques/barriles), electrónica (limpiador de superficies), torres enfriamiento de agua de refrigeración, lavandería (deodorización), contaminación del aire en interiores (eliminación de partículas) y aguas residuales industriales en general.

Métodos de análisis instrumental
Existen dos técnicas o métodos para la medición del ozono disuelto: instrumental y colorimétrico. Los tres principales métodos instrumentales son: 1) potencial de oxidación/reducción (POR), 2) sonda con membrana y 3) absorción UV. Estos métodos tienen la ventaja de dar lecturas continuas, y se evita el desgaseado de ozono durante el muestreo cuando se utiliza en línea. Los instrumentos generalmente se calibran utilizando métodos colorimétricos, excepto por el método de absorbancia UV.

1)Potencial de oxidación/reducción (P.O.R.)
El método POR mide la tensión generada por el ozono en la solución en un electrodo de platino relativo a un electrodo de referencia estándar. Se requiere agua muy limpia con la mayor moderación en la turbiedad.
2) Sonda de membrana
La sonda de membrana es similar al método POR pero tiene una membrana permeable al gas sobre el electrodo de platino. El ozono deberá difundirse a través de la membrana para llegar al electrodo de platino, donde se genera una tensión. La sonda de membrana puede utilizarse en agua bastante sucia, pero es muy posible que la membrana requiera recambio y limpieza frecuente.
3) Absorbancia UV

El ozono tiene un pico de absorbancia en el agua de aproximadamente 258 nm, que es la región ultravioleta del espectro de la luz. El método de medición de absorbancia UV es comúnmente utilizado para el análisis de gases, pero también puede ser aplicado al agua potable limpia libre de impurezas que absorben UV.

Métodos de análisis colorimétrico
Los tres principales métodos colorimétricos de medición de ozono en agua son:
1) titulación yodométrica, 2) N, N-dietil-p-fenilenediamina (DPD) y 3) trisulfonato índigo.

1) Titulación yodométrica
En el método yodométrico, el ozono reacciona con yoduro de potasio (KI) para formar yodo (I2), que luego es titulado con tiosulfato a un criterio de valoración de indicador de almidón con la muestra tamponada a pH 2. Sin embargo, la estequiometría de la reacción es sensible al pH, la composición y concentración del tampón, concentración de iones de yoduro, técnicas de muestreo y tiempo de reacción7.

2)DPD
En el método DPD, el ozono reacciona con yoduro de potasio a yodo que luego reacciona con DPD para producir un compuesto color rosa. La intensidad del compuesto rosa es proporcional a la concentración de ozono. La intensidad se mide aproximadamente a 515 nm en un espectrofotómetro o colorímetro. Los métodos DPD y yodométrico tienen el inconveniente de que no se puede distinguir entre el ozono y otros oxidantes comunes. Algunos proveedores fabrican kits de prueba colorimétricos que utilizan DPD/KI ya sea en polvo o en tabletas. Sin embargo, la manipulación de la muestra necesaria para disolver las tabletas o el polvo puede causar una pérdida en la concentración de ozono medido. Esta desventaja es minimizada con un kit de prueba de ozono con un líquido reactivo KI que se añade a la muestra con una botella-gotero. Este método, fabricado únicamente por CHEMetrics, Inc. también utiliza un líquido reactivo DPD empaquetado en una ampolla de vidrio de dosis unitaria sellada al vacío. La reacción tiene lugar en el interior de la ampolla lo que aumenta la exactitud y precisión total del método. El método es aplicable a muestras que no contienen cloro.

3)Trisulfonato índigo
El método de trisulfonato índigo tiene varias ventajas sobre las otras dos técnicas. De acuerdo con los métodos estándar, “El método de colorimétrico índigo es cuantitativo, selectivo y simple. El método es aplicable al agua de lago, infiltrado de río, aguas subterráneas que contienen manganeso, aguas subterráneas extremadamente duras e incluso aguas de desecho doméstico tratadas biológicamente”. El trisulfonato índigo se vende normalmente como la sal de potasio. La pureza del trisulfonato índigo puede variar de proveedor a proveedor e incluso de lote a lote del mismo proveedor. Se ha demostrado que tanto la pureza como la edad del trisulfonato índigo afectan la estequiometria de la reacción con el ozono8. El trisulfonato índigo de alta pureza (>80%) tiene un absortividad molar de unos 20000 m-1cm-1 a 600 nm.

El método se basa en la decoloración de la tintura por ozono, donde la pérdida de color es directamente proporcional a la concentración de ozono. La muestra es generalmente ajustada a cerca de pH 2 para minimizar la destrucción del ozono por reacción con los iones de hidróxido. El procedimiento analítico más común resta la absorbancia de trisulfonato índigo después de la reacción con una muestra de la de un blanco libre de ozono. El cloro decolora el trisulfonato índigo a una velocidad moderada, pero esto puede demorarse considerablemente mediante la adición de ácido malónico.

Los productos de oxidación de la reacción del ion de manganeso (Mn+2) con el ozono pueden destruir el trisulfonato índigo. A fin de medir el ozono en presencia de iones de manganeso, primero se agrega glicina a una muestra para destruir selectivamente el ozono, entonces se agrega trisulfonato índigo para medir la evidente concentración de ozono debido a la reacción con los productos de la oxidación de los iones de manganeso. Este valor se resta del valor obtenido a partir de una muestra sin glicina añadida.

Prueba de trisulfonato índigo
CHEMetrics ofrece kits que incluyen ampollas de reactivo autollenable. Los ingredientes activos son trisulfonato de potasio índigo y ácido malónico. El ácido malónico en el reactivo de CHEMetrics evita interferencias de hasta 10 ppm con cloro. La competencia no informan su límite de interferencia del cloro en sus kits, el colorante índigo que ofrecen se seca en la superficie de la ampolla y se dificulta la reactividad del ácido malónico por presentarse en forma de polvo. En cambio, las ampollas de CHEMetrics contienen un reactivo líquido que permite que el trisulfonato índigo disuelto reaccione al instante con el ozono en la muestra que se toma en la ampolla. Su ventaja radica en que previene la pérdida de ozono a través de las reacciones colaterales mientras se disuelven el trisulfonato índigo y el polvo de los otros kits.

Mientras que las ampollas de la competencia son de una pulgada (25.4 mm) de diámetro y sólo pueden ser utilizadas en sus instrumentos. El producto de ozono índigo de CHEMetrics se ofrece en ampollas de 13 mm de diámetro que son compatibles con la mayoría de los espectrofotómetros del mercado.

Dado que la concentración de ozono se mide por la pérdida de trisulfonato índigo, se requiere la medición de la absorbancia tanto inicial como final. Para lograr esto, los productos existentes en el mercado requieren la medición de una ampolla de agua libre de ozono (la absorbancia de trisulfonato índigo inicial) y uno en la muestra (la absorbancia de trisulfonato índigo final). La diferencia de absorbancia se convierte en la concentración de ozono. La ampolla utilizada para medir la absorbancia de trisulfonato de índigo inicial puede ser reutilizada con una serie de ampollas de muestra. Los kits CHEMetrics evitan la necesidad de dos ampollas mediante un método de “auto-puesta a cero”, que mide la absorbancia de la misma ampolla antes y después del muestreo, eliminando la necesidad de generar una ampolla de absorbancia de trisulfonato índigo inicial cada vez que se ejecuta una prueba. La medición de la absorbancia inicial, antes de la toma de la muestra, se divide entre un factor que tenga en cuenta la dilución una vez que la ampolla se ha llenado. La diferencia entre la absorbancia inicial dividida entre el factor, y la absorbancia después del muestreo, se convierte en la concentración de ozono. Existe en el mercado un colorímetro de lectura directa, llamado un único medidor de analito, que realiza automáticamente todos los cálculos adecuados.
El uso de una sola ampolla por prueba hace al método CHEMetrics más eficiente y menos costoso que el método de la competencia.

Referencias
1.Rakness, K., (2005) Ozone in Drinking Water Treatment: Process Design, Operation, and Optimization. AWWA.
2.Standard Methods for the Examination of Water and Wastewater, 22nd ed. (2012) 4500-03 B, 4-145 .
3.Haag, W. R., and J. Hoigne (1983) Ozonation of bromide-containing waters: kinetics of formation ofhyprobromous acid and bromate. Environ. Sci. Technol. V17, p 261.
4.Spartan Environmental Technologies, LLC, Tech. Bulletin TA-112064.
5.Edberg, S., Microbial Health Risks of Regulated Drinking Waters in the United States: A Comparative Microbial Safety Assessment of Public Water Supplies and Bottled Drinking Water (2013) Drinking Water Research Foundation, 31 p.
6.Bollyky, L. J., Benefits of Ozone Treatment for Bottled Water (2001) http://pacificozone.com/wp-content/uploads/2014/04/app_1388591099.pdf.
7.Langlais, B., D.A. Reckhow, y D.R. Brink eds. (1991) Ozone in Water Treatment: Application and Engineering. Chelsea, Mich.: Lewis Publishers, Inc.
8.Gordon, G., R. Gauw, Y. Miyahra, B. Walters, y B. Bubnis (2000) usando para calcular la absorbancia Indigo. Indigo Sensitivity Coefficient. Jour. AWWA, V92, pp. 96-100.


Más información:
www.microclar.com

Hermanos Wright Vs Curtiss Mentes Brillantes

Clic en la imagen

Wilbur y Orville Wright, dos mecánicos de bicicletas, descubren la clave para volar. Son los primeros en usar un túnel de viento para demostrar su teoría y no tardan en diseñar una aeronave funcional. Temerosos de perder el control de su invento, deciden mantenerlo en secreto hasta tener la patente y frenar la innovación en la industria que han ayudado a crear.

Pero sus sueños de gloria pronto se derrumban cuando Glenn Curtiss, un aventurero motociclista, diseña su propia aeronave y se convierte en la estrella de la aviación. Los hermanos Wright acuden a los juzgados para proteger su patente y su condición de primeros aviadores de la historia, pero Curtiss contraataca con una sorpresa fulminante: un diseño que precede al de los hermanos.

NASA Live Official Stream of NASA TV

NASA LIVE - Avibert

Diríjase desde el programa espacial de Estados Unidos a YouTube, vea la transmisión en vivo de NASA TV aquí para obtener lo último de nuestra exploración del universo y descubra cómo descubrimos nuestro planeta natal.

La televisión de la NASA transmite una variedad de programas educativos y de relaciones públicas pregrabados regularmente programados las 24 horas del día en sus diferentes canales. La red también proporciona una variedad de programación en vivo, como cobertura de misiones, eventos (paseos espaciales, entrevistas con los medios de comunicación, transmisiones educativas), conferencias de prensa y lanzamientos de cohetes. En los Estados Unidos, los canales de Medios y Medios de la Televisión de la NASA son señales digitales de banda C MPEG-2 transmitidas por la modulación QPSK / DVB-S en el satélite AMC-3, transpondedor 15C, a 87 grados de longitud oeste. La frecuencia del enlace descendente es de 4000 MHz, polarización horizontal, con una velocidad de datos de 38.86 Mhz, velocidad de símbolo de 28.1115 Ms / s, y ¾ FEC. Se necesita un decodificador de receptor integrado (IRD) compatible con la transmisión de video digital (DVB) para la recepción.

Fuente: NASA